
INHERITANCE
Boaz Kantor

Introduction to Computer Science

IDC Herzliya (“Reichman”)

“My name is Ryan; I inherited the ship from the previous

Dread Pirate Roberts, just as you will inherit it from me.

The man I inherited it from is not the real Dread Pirate

Roberts either. His name was Cummerbund. The real

Roberts has been retired 15 years and living like a king in

Patagonia”.

INTERFACES VS. INHERITANCE

 Interfaces:

 Set the interaction between an object and its clients.

 Allow conformity and standardization in a project.

 Thumb rule: everything that is “able” should be an interface.

 Thumb rule: an abstract class with nothing but abstract methods should be an interface.

 Inheritance:

 Setting hierarchy of specific-general classes.

 A class can inherit up to one class, and implement multiple interfaces.

© BOAZ KANTOR, IDC HERZL IYA 2

INTERFACES

© BOAZ KANTOR, IDC HERZL IYA 3

INTERFACES, GROUND RULES

 An interface defines an object API.

 All interface methods are public abstract.

 Any class implementing an interface must implement all of its methods.

 Here‟s the beauty part:

A client can use the interface as a type, ignoring
the type of the class which implemented it
(polymorphism).

© BOAZ KANTOR, IDC HERZL IYA 4

INTERFACES, EXAMPLE

public interface SomeInterface {

 void foo();

 String youMustImplementMe(float x);

}

© BOAZ KANTOR, IDC HERZL IYA 5

INTERFACES, EXAMPLE

public class SomeClass implements SomeInterface {

 public void foo() {

 System.out.println("SomeClass.foo()");

 }

 public String youMustImplementMe(float y) {

 System.out.println("SomeClass.youMustImplementMe()");

 return null;

 }

 public void unrelatedMethod() {

 System.out.println("SomeClass.unrelatedMethod()");

 }

}

© BOAZ KANTOR, IDC HERZL IYA 6

INTERFACES, EXAMPLE

public class SomeOtherClass {

 public static void main(String[] args) {

 SomeClass s = new SomeClass();

 f(s);

 }

 private static void f(SomeInterface i) {

 i.foo();

 }

}

© BOAZ KANTOR, IDC HERZL IYA 7

INHERITANCE

© BOAZ KANTOR, IDC HERZL IYA 8

INHERITANCE, GROUND RULES

1. The derived class includes all members of the super class.

2. Non-private members of super class can be accessed directly by sub
classes.

3. The derived class can extend the functionality of the super class.

4. The derived class can override the functionality of the super class.

5. Overridden method implementation has precedence over super class
implementation.

6. Overriding fields and static methods is called “hiding” and is discouraged.

7. Constructors are not derived.

© BOAZ KANTOR, IDC HERZL IYA 9

INHERITANCE, GROUND RULES

8. Any constructor must first call a super constructor, directly or by calling another
constructor.

9. If no such call is written, super() is implicitly called.

10. Anything “protected” is visible to other classes of the same package and derived
classes, no matter to which package they belong.

11. You can increase a super method visibility, but can‟t reduce it.

12. A class which does not inherit another class, automatically inherits
java.lang.Object.

13. final methods, classes and fields cannot be overridden.

14. There is no multiple inheritance in Java.

© BOAZ KANTOR, IDC HERZL IYA 10

INHERITANCE BEST PRACTICES

1. Avoid writing protected instance variables.

1. Instance variables should always be private.

2. Use protected/public setters and getters.

2. Any method called directly or indirectly by a constructor should be

final.

3. Always use instanceof before casting a reference (polymorphism).

© BOAZ KANTOR, IDC HERZL IYA 11

ABSTRACT

© BOAZ KANTOR, IDC HERZL IYA 12

THE LOGICS BEHIND

 Assume a general class G and subclasses A and B.

 Sometimes there is no meaning to hold an object of type G.

 G should still implement default behavior in methods.

 In addition, G should define „an interface‟ for subclasses.

 A and B must implement their own implementation of the „interface‟

(i.e. abstract) methods.

 A and B still inherit the default behavior of the implemented methods.

© BOAZ KANTOR, IDC HERZL IYA 13

GROUND RULES

1. An abstract class cannot be instantiated.

2. An abstract method cannot be implemented.

3. A class with an abstract method must be defined abstract.

4. A sub-class which does not implement a super‟s abstract method is

abstract.

5. An abstract class with no implementation should probably be an

interface.

© BOAZ KANTOR, IDC HERZL IYA 14

ABSTRACT, EXAMPLE

 Assume class MotorizedVehicle, with subclasses Motorcycle and Airplane.

 There is no meaning to an object of type MotorizedVehicle.

 However, since all motorized vehicles have an engine, MotorizedVehicle should
have an engine implementation.

 Since all motorized vehicles need to start the engine, MotorizedVehicle should
have an implemented method startEngine.

 Since each motorized vehicle has its own turning implementation,
MotorizedVehicle should have an abstract method turn().

 Motorcycle and Airplane should only implement turn(). They can override
startEngine(), if they wish.

© BOAZ KANTOR, IDC HERZL IYA 15

ABSTRACT, EXAMPLE

public abstract class MotorizedVehicle {

 private Engine engine = new Engine();

 public void startEngine() {

 engine.start();

 }

 public abstract void turn(Direction d);

}

© BOAZ KANTOR, IDC HERZL IYA 16

INHERITANCE, EXAMPLE

© BOAZ KANTOR, IDC HERZL IYA 17

PROJECT REQUIREMENTS

 Write an MMORPG (Massive Multiplayer Online Role Playing Game).

 The game consists of players and computer characters.

 Implement game, characters and weapons.

© BOAZ KANTOR, IDC HERZL IYA 18

HIGH LEVEL DESIGN

Game Character

Player
Non-
player

Weapon
to shoot

Weapon
to throw

Weapon
to slash

Sword

Interfaces

Concrete

classes

Abstract

class
Main class

© BOAZ KANTOR, IDC HERZL IYA 19

Concrete class

