
Exceptions
Author: Boaz Kantor

The Interdisciplinary Center, Herzliya

Introduction to Computer Science

Fall 2010 semester

Why Exceptions?

Give me a number between
1 and 10, and I will give you

money in that amount

80!

Why you little
$#%%&$#%@$@$%^

“An exception is an event that occurs

during the execution of a program, that

disrupts the normal flow of instructions”

© Boaz Kantor, IDC
Herzliya

Why Not Return Errors?

• Return values are not meant for that
• Requires program-wide standardization of ERROR

variables
• May be ignored
• Do not contain much of information
• Not neat, not systematic!

public static final int ERROR_NEGATIVE_NUMBER = -1;

public double squareRoot(int number) {

 if (number < 0) {

 return (double)ERROR_NEGATIVE_NUMBER;

 }

 return Math.sqrt(number);

}

© Boaz Kantor, IDC
Herzliya

Memory

What Is an Exception?

• A class:

▫ Can be instantiated

▫ Has fields and methods

▫ You can write your own exceptions!

Class
Exception

Exception Object Exception ex = new Exception();

ex
(Exception reference)

© Boaz Kantor, IDC
Herzliya

Two Players

• Calling method

▫ Catches it

▫ Handles it

▫ Ignores it

• Throwing method

▫ Declares/documents it

▫ Throws it

Calling Method
public static void main(String[] args)

“Calculate
squareRoot(-2)

please”

Are you nuts? Catch!

Throwing Method
public double squareRoot(int)

(Exception)

© Boaz Kantor, IDC
Herzliya

Two Types

• Runtime exceptions
▫ RuntimeException

▫ Does not need to be declared in throwing method

▫ Does not need to be caught in calling method

▫ Due to that, used too often

• Non-runtime exceptions

▫ InstantiationException, ParseException, PrintException, ..

▫ Must be declared in throwing method

▫ Must be caught or declared in calling method

© Boaz Kantor, IDC
Herzliya

Throwing It (by throwing method)

• Similar to „return‟ (same same but different)
• Throwing:

1. Instantiate an Exception
Exception ex = new Exception();

2. Add information to the object (usually in constructor)
Exception ex = new Exception(number + “ is negative”);

3. Throw it using „throw‟
throw ex;

• Immediately returns to the calling method
▫ (except when „finally‟ block exists)

public double squareRoot(int number) {

 if (number < 0) {

 throw new Exception(number + “ is negative!”);

 }

 return Math.sqrt(number);

}

© Boaz Kantor, IDC
Herzliya

Declaring It (by throwing method)

• Similar to „return‟ documentation
• Either:

▫ Document (javadoc)
▫ Declare
▫ (or both)

• If non-runtime exception = MUST declare!

/**

 * @throws Exception

 */

public double squareRoot(int number) {

▫ Or:

public double squareRoot(int number) throws Exception {

© Boaz Kantor, IDC
Herzliya

Catching It (by calling method)

• Similar to assigning return value
• How:

1. Surround your method with „try‟ block
2. Catch in a „catch‟ block

public static void main(String[] args) {

 try {

 double root = squareRoot(-2);

 } catch (Exception e) {

 System.out.println(e.getMessage());

 }

}

© Boaz Kantor, IDC
Herzliya

Ignoring It (by calling method)

• Similar to assigning a returned value:
▫ Code may be not surrounded with a

„try..catch‟ block

• Will be re-thrown
▫ As if the calling method was throwing it

• If non-runtime exception:
▫ Can‟t ignore!
▫ Either:

 Surround with try..catch

 Declare it

© Boaz Kantor, IDC
Herzliya

Exceptions vs. Returning Errors,

throwing method

Returning Errors

Exceptions

public static final int ERROR_NEGATIVE_NUMBER = -1;

public double squareRoot(int number) {

 if (number < 0) {

 return (double)ERROR_NEGATIVE_NUMBER;

 }

}

public double squareRoot(int number) throws Exception {

 if (number < 0) {

 throw new Exception(number + “ is negative!”);

 }

}

© Boaz Kantor, IDC
Herzliya

Exceptions vs. Returning Errors,

calling method

Returning Errors

Exceptions

double root = squareRoot(-2);

if (root == ERROR_NEGATIVE_NUMBER) {

 System.out.println(“Error: negative number”);

}

try {

 double root = squareRoot(-2);

} catch (Exception e) {

 System.out.println(e.getMessage());

}

© Boaz Kantor, IDC
Herzliya

Catching Several Exceptions

• A method may throw several types of exceptions

• The calling method can handle each differently

try {

 // call the throwing method

} catch (ExceptionType1 e1) {

 // handle this

} catch (ExceptionType2 e2) {

 // handle that

} finally {

 // finalize stuff

}

© Boaz Kantor, IDC
Herzliya

Finally!

• A block

• Always executes when the „try‟ block exits

try {

 // call the throwing method

} catch (ExceptionType1 e1) {

 // handle this

} catch (ExceptionType2 e2) {

 // handle that

} finally {

 // finalize stuff

}

© Boaz Kantor, IDC
Herzliya

Summarizing Comparison,

throwing method
Returning Errors Exceptions

public static final int ERROR_NEGATIVE = -1;

public static final int ERROR_OUTRANGE = -2;

public static final int MAX_NUMBER = 99;

public double squareRoot(int number) {

 if (number < 0) {

 return ERROR_NEGATIVE;

 }

 if (number > MAX_NUMBER) {

 return ERROR_OUTRANGE;

 }

 return Math.sqrt(number);

}

public static final int MAX_NUMBER = 99;

public double squareRoot(int number) {

 if (number < 0) {

 throw new NegativeException();

 }

 if (number > MAX_NUMBER) {

 throw new OutOfRangeException();

 }

 return Math.sqrt(number);

}

© Boaz Kantor, IDC
Herzliya

Summarizing Comparison,

calling method
Returning Errors Exceptions

public static void main(String[] args) {

 double root = squareRoot(-2);

 double lastResult;

 switch (root) {

 case ERROR_NEGATIVE:

 // handle this

 lastResult = root;

 break;

 case ERROR_OUTRANGE:

 // handle that

 lastResult = root;

 break;

 default:

 print(“root = “ + root);

 lastResult = root;

 break;

 }

}

public static void main(String[] args) {

 double root;

 try {

 root = squareRoot(-2);

 } catch (NegativeException ne)(

 // handle this

 } catch (OutOfRangeException oore) {

 // handle that

 } finally {

 lastResult = root;

 }

 print(“root = “ + root);

}

© Boaz Kantor, IDC
Herzliya

Exceptions
Author: Boaz Kantor

The Interdisciplinary Center, Herzliya

Introduction to Computer Science

Fall 2010 semester

Finally!
http://java.sun.com/docs/books/tutorial/essential/exceptions

