usvawmno i< z = < rNEA40nFOoecUuo
e M oMM o oWl P B LR S Rode SR (R M @R 02
O 30 e Wil @S B 1| By ot PP upNTEYrYRaAG Y
WD S W ol e @ A S e EMANODCELMEY 0+
e 100 i o By < ® N o R W AT
® P uUk T E O AW ey rman
P LS M P Y SAESR LS P
vl Ooyw ™M e ® V. mRaun B

U el -~ S B N S S A

A

WA S DA C <

c

A > o= m z W 00 U

&

Q amwHe WS vo

@
L o L ¥ <« ™m 9 @
o .,,.¢miu;e€CE:\A
< .

9
3
8 7D A CiB
4L 6.Q E
S

-
7
]
F
c
1
E
b B

glicctas

4
E
8
4
2
: 16
2
b]
0
S
e
Vo3 6 S

$ 9
7

b :
J

1

bt

n

2

b
ic

7
934 6

]

3

4
SF. R D€
iy
.i.
P30
iih F MY
.f
Vi
B R H37 @
¥
Zr 24a#T8/ @

AN
F

@
D,

o
T 4+ ™ o i~ v o
M e r = omw 2w ew v werw > B

Vo T TR T ey D OB ey 18 B S B S e A
M A W= O G Mmoo L crNaa

IF R Pre
i e
92

er

/
1335/°%

T e A) D e 24 @ AT AN Ty I T o2 P
R i e e e

~
B ~F B A A OO l.r/ﬁx:v.‘..l_vwgk.\i.\gt.lt‘.
@
a

1
B e T

T
)
)
!
é
@ 8

of, IDC

B A0 O 0 Dwr o €T M P W0 3, IV e, A4
O N BN D e B S 0 9,0 08U

- T N S TR - T S EC -V
TS L T I B S e o S S I LR -
Ll..lliaﬂm._lr’b!'.qli\: PRI A RN UL O Py

_,:‘)..r,imtA.vﬁaﬂnoleﬁ./uﬁ.U:f‘

A
7
8 §
8
4
e

:

-
L]
<

n

© Boaz Kant
v

..TL,.)..:m.AF?_,IGSO.CB.J:?D,.J#J:.
3 > e < 0 W MO gl g Ro Y Py To e T 9 8

ERUE-% Mol E w00V OO WO M® N TR Vol O @l SR D 4 -
C O MDA Wik 00 A B B s e B o B T

<

©

MO @A U O St U e N AW -

Froe

R) Uk BE S Y SRS WP > Y

“w C‘I..xoa._ha»._ln:s.ﬂd'
- b B W e @ e N

pill?*. — Cypher, The Matrix

319.fmA ohnomwg

LY

"
© MO N~ @ A Py e oA

Wm0 o o s B W ey
< Wtk 00 e By e @ 3 B B T
268D0‘Sw0791+plr@l.dl\7_77.4 e DA

o e g e Bl L e 2l Sl e it - i A

%.:A_/,OFCTQEBGQQC*EC91}

Pe B

roe

WV e Lwe ™M ee VSRR S
MEs TR s L P - 8w

D
.. e e reyy
TA S VT D 0 W R N Ty i ot % W e @ R)

t ever since | got here

N A A B O W A O

ing i

S 0 & N & DA KT R SR D O 9 R 0
g of - T T NPt A L $.5 5 @ o o
R Y D e B D @ D ANy e
R m @ e]S U s o0 Pate SRS, K4 e 90 6
> = 0 AR FL BT IR, P Mo W IS
w'?lkuf,,_H/_Tblrs.QS‘H LR = O e)
w © & M MDA A B0 s @ §
mae ¥ 0 @ B de B AREE AU, ©CF 20 B A 0]
" ™M N e Db om0 M N0 e e
u/\”moorlrf/kv..}.vl..il_ﬂﬂ.)l\:f.‘e_/ R,
o)

4

e
A @7

]

b2

to Computer Science,

ster
p 71X
Y,

)

t

e 87
46

(&)

7
. B B.E A

9N SR o AR R RS AT O
/2 M e 3 .X A DD R Pl L T B @ o s oo e
R I
%
o

D @ E

e 0

S v A S e 8K D OV R
="o-@ e B2 @ iy -2 1 e
N e M e P D e (PP o P
&N ® o.M - xS

©°

3 S
b

K
.5

tor
n

) 7r Jo %

[y VR I S TN I VL

} S e S e DU B © 0 9.9 QW M
den/n!/.rn/:).?laliA?‘)Q\.@‘\E%jvﬁbi
UH/;I“/L:.TJi\./JerA.r#»-‘\\«

Kan

seme

B
4

iy
f‘b::qivi:/n\\llh.’v.\.w.«,r]%.vilv»\a/-.\.
- W 2 4= <0 @ S £ AT D Ay

1 know What you’re thinking, 'cause right now I'm thinking the same thing.
| Why oh why didn't | take the

4 Actually, I've been think

a
2

0az

"<rrara

Ihtroductio

Fall

x.D:/:\..OA,..l.l W B P LS R

B

)T e

00 @ ™ O U B @y Y TN U O @y ey a\n.ﬂxig‘}_fo.v‘.ﬁ "~
00 V1 © O W @S ol e @l T D S e Wb PR o

e
Y
p)

f 8

AL

F &
A
A

a
4

VIC—why oh why?

= If you want to know cars, it's not fjl ¢ -
enough to learn how to drive. ¢ '

= VICis like “under the hood” of
computers.

= Why “like”? Because there’s no
such language.

= Butit simulates pretty damn good
real computers architecture.

Reading input

» Each program has a queue of data.

» Every ‘read’ command reads the next number in the
queue, and stores it in the data register.

= Syntax:
800

= Example:
800
800
800

Printing output

= VIC's output cell emulates a CMD window, a printer,
a file or any other output device.

» We can print only what's in the data register.

= Remember: always make sure the data you want to
printis in the data register!

= Syntax:
900

= Example:
900

/O, example

= Exercise: read 4 numbers and write them to the output.

= Solutions: |
800 IEE Main Memory
900
800 ﬁ
900 — .
800
900 =
800

900

/O Units

© Boaz Kantor, IDC

Storing data

= Since thereis only one data register, each ‘read’ instruction
overwrites the data that was previously stored there.

= In order to keep data for future use, we store it in longer term
memory.

= This memory is an array of cells.
= We can choose in which memory cell to store the data.
= Syntax:

4dxx

= Example:
481

I Reading and storing, example

Exercise Solution

n Read 4 numbers 800 // read number
411 // store in cell 11

800 // read number
412 // store in cell 12
800 // read number
413 // store in cell 13
800 // read number

= Store them in memory
cells 11, 12, 13, and 5o.

Arithmetic operations

» The only processing available in VIC is adding and subtracting numbers.

= We add/subtract a number in a selected memory cell to/from the value
in the data register.

» Theresultis saved backin the data register.

= Syntax:
Add: 1xx
Subtract: 2xx

= Example: add the number in cell 51 to the value in the data register:
151

= Example: subtract the value in cell 8o from the value in the data register:
280

I Arithmetic operations, example

= Read 4 numbers
= Sum up all the numbers

= Print the result

How many memory cells have we used?
Can we use less memory to solve this
exercise?

800
490
800
491
800
492
800
190
191
192
900

//
//
//
//
//
//
//
//
//
//
//

read first number
store in cell 90
read second number
store in cell 91
read third number
store in cell 92
read fourth number
add first number
add second number
add third number

write to output

I Memory efficiency, example

Naive solution

800
490
800
491
800
492
800
190
191
192

Memory-efficient solution

800
490
800
190
490
800
190
490
800
190

//
//
//
//
//
//
//
//
//
//

read first number
store in cell 90
read second number
add first number
store result

read third number
add previous result
store result

read fourth number

add previous result

Loops

= There is no ‘while’, ‘do-while’ nor ‘for".

= We can only jump to another placein
memory.

= Let's ‘jump’ from this material and talk about
something else. We will jump right back
afterwards.

How it really works

= When we run a program, the operating system first loads the
program instructions into the memory (RAM).

= Theinstructions are then read one by one (‘fetch’).

» The processor tries to understand what we wanted (‘decode’),
and then runs the instruction (‘execute’).

* When we have a loop in the code, the instruction will be “jump to
another location in memory and continue from there”.

= Datais saved in another location in the same memory (RAM).

= We can't jump to the data area, and we can’t save data in the
program area.

© Boaz Kantor, IDC

How it works with VIC

= When we load a .vic’ file to the VIC simulator, the
program instructions are written to the main
memory.

» Each instruction occupies one memory cell.
= We can use this to jump from one cell to another.

= VICallows us to jump anywhere we want in the
main memory (but we shouldn’t).

© Boaz Kantor, IDC

Back to loops

= There is no ‘while’, *do-while’ nor ‘for".
= We can only jump to another place in memory.
* There are 3 kinds of ‘jump”:

5XX // go to cell xx

6XX // if (data register == 0) go to cell xx

7XX // if (data register > 0) go to cell xx
» Example:

693

Loops, example

= Write a program that reads 2
numbers and multiplies them.

= Let's think: 5x4 is 5+5+5+5,.
= So we need these variables:
The number we multiply

Loop counter
Interim summation

= Let's set memory cells go for the

number we multiply, 91 for the
loop counter and 92 for the

398
492
800

490
800
491
390
192
492
391
299
491

Problem:
Uninitialized!

[/ load zero

[/ initialize sum

/| read the first number
/[store as the number we summarize
/[read the second number

/[store as loop counter

/| load the number

// add to the sum

/| store the result

/[load the loop counter

// loop-counter--

/[store the new loop counter

Downsides of the 3-digit VIC code

= We have to know cell numbers in advance:
Branching: how do we know to which cell to jump?

Variables: how do we know we’re not overriding the
program area?

» Readability: it's hard to remember instructions as
numbers.

* The solution: a higher level programming
language!!

© Boaz Kantor, IDC

The symbolicVIC code

= [t's a higher level programming language:
We use symbols instead of memory addresses.
The instructions are in English.

The source code is not executable. It needs to be
translated into the 3-digit VIC code.

» The translation is called.. Compilation!

© Boaz Kantor, IDC

TheVIC assembler

= Compiles the symbolic language to VIC code:
Translates English instructions to numbers.
Translates symbols to memory cells.

Current instruction: Read next input to data register

F 3 »> - | L F|E| Clear H:rl;?;::nne Data Flow ==
Al » [or| m| 44| F[E] clear| = —

Change language: Hebrew

© Boaz Kantor, IDC

1" Loops, example (symbolicVIC)

398 // load zero INIT:

492 // initialize summation PG, ALY
800 // read the first number i::;e summation
490 // store as the number we summarize Store number
800 // read the second number Read

491 // store as loop counter Store counter

390 // load the number
192 // add to the summation
492 // store the result
391 load the loop counter

Load number
Add summation
Store summation

I Hacking (if we have time)

Code obfuscation Buffer overflow
= Writing a program that * Modify another program
o while running it:
writes itself: = Allocate space for user input.
= Write an instruction which = Don't check the |ength of the
writes another instruction input.
somewhere else in the code. » The user input can be too long,

while the overflowing
characters are instructions,
which will overwrite the

