
Computer Architecture

“I know what you're thinking, 'cause right now I'm thinking the same thing.
Actually, I've been thinking it ever since I got here:
Why oh why didn't I take the BLUE pill? “. – Cypher, The Matrix

Boaz Kantor
Introduction to Computer Science,
Fall semester 2010-2011
IDC Herzliya

© Boaz Kantor, IDC

VIC – why oh why?

 If you want to know cars, it’s not
enough to learn how to drive.

 VIC is like “under the hood” of
computers.

 Why “like”? Because there’s no
such language.

 But it simulates pretty damn good
real computers architecture.

© Boaz Kantor, IDC

Reading input

 Each program has a queue of data.
 Every ‘read’ command reads the next number in the

queue, and stores it in the data register.
 Syntax:

 800

 Example:
 800

 800

 800

© Boaz Kantor, IDC

Printing output

 VIC’s output cell emulates a CMD window, a printer,
a file or any other output device.

 We can print only what’s in the data register.
 Remember: always make sure the data you want to

print is in the data register!
 Syntax:

 900

 Example:
 900

© Boaz Kantor, IDC

I/O, example

 Exercise: read 4 numbers and write them to the output.

 Solutions:
800

900

800

900

800

900

800

900

© Boaz Kantor, IDC

Storing data

 Since there is only one data register, each ‘read’ instruction
overwrites the data that was previously stored there.

 In order to keep data for future use, we store it in longer term
memory.

 This memory is an array of cells.

 We can choose in which memory cell to store the data.

 Syntax:
 4xx

 Example:
 481

 482

© Boaz Kantor, IDC

Reading and storing, example

Exercise Solution

 Read 4 numbers

 Store them in memory
cells 11, 12, 13, and 50.

800 // read number

411 // store in cell 11

800 // read number

412 // store in cell 12

800 // read number

413 // store in cell 13

800 // read number

450 // store in cell 50

 © Boaz Kantor, IDC

Arithmetic operations

 The only processing available in VIC is adding and subtracting numbers.

 We add/subtract a number in a selected memory cell to/from the value
in the data register.

 The result is saved back in the data register.

 Syntax:
 Add: 1xx

 Subtract: 2xx

 Example: add the number in cell 51 to the value in the data register:
 151

 Example: subtract the value in cell 80 from the value in the data register:
 280

© Boaz Kantor, IDC

Arithmetic operations, example

Exercise Solution

 Read 4 numbers

 Sum up all the numbers

 Print the result

800 // read first number

490 // store in cell 90

800 // read second number

491 // store in cell 91

800 // read third number

492 // store in cell 92

800 // read fourth number

190 // add first number

191 // add second number

192 // add third number

900 // write to output

How many memory cells have we used?
Can we use less memory to solve this
exercise?

© Boaz Kantor, IDC

Memory efficiency, example

Naïve solution Memory-efficient solution
800

490

800

491

800

492

800

190

191

192

900

800 // read first number

490 // store in cell 90

800 // read second number

190 // add first number

490 // store result

800 // read third number

190 // add previous result

490 // store result

800 // read fourth number

190 // add previous result

900 // write

© Boaz Kantor, IDC

Loops

 There is no ‘while’, ‘do-while’ nor ‘for’.

 We can only jump to another place in
memory.

 Let’s ‘jump’ from this material and talk about
something else. We will jump right back
afterwards.

© Boaz Kantor, IDC

How it really works

 When we run a program, the operating system first loads the
program instructions into the memory (RAM).

 The instructions are then read one by one (‘fetch’).

 The processor tries to understand what we wanted (‘decode’),
and then runs the instruction (‘execute’).

 When we have a loop in the code, the instruction will be “jump to
another location in memory and continue from there”.

 Data is saved in another location in the same memory (RAM).

 We can’t jump to the data area, and we can’t save data in the
program area.

© Boaz Kantor, IDC

How it works with VIC

 When we load a ‘.vic’ file to the VIC simulator, the
program instructions are written to the main
memory.

 Each instruction occupies one memory cell.

 We can use this to jump from one cell to another.

 VIC allows us to jump anywhere we want in the
main memory (but we shouldn’t).

© Boaz Kantor, IDC

Back to loops

 There is no ‘while’, ‘do-while’ nor ‘for’.
 We can only jump to another place in memory.
 There are 3 kinds of ‘jump’:

 5xx // go to cell xx
 6xx // if (data register == 0) go to cell xx
 7xx // if (data register > 0) go to cell xx

 Example:
 693

© Boaz Kantor, IDC

Loops, example
Exercise Solution
 Write a program that reads 2

numbers and multiplies them.

 Let’s think: 5x4 is 5+5+5+5.

 So we need these variables:
 The number we multiply
 Loop counter
 Interim summation

 Let’s set memory cells 90 for the
number we multiply, 91 for the
loop counter and 92 for the
summation

800 // read the first number

490 // store as the number we summarize

800 // read the second number

491 // store as loop counter

390 // load the number

192 // add to the sum

492 // store the result

391 // load the loop counter

299 // loop-counter--

491 // store the new loop counter

704 // if (loop-counter>0) loop

392 // load the final summation

900 // write to output

Problem:
Uninitialized!

706

© Boaz Kantor, IDC

Downsides of the 3-digit VIC code

 We have to know cell numbers in advance:
 Branching: how do we know to which cell to jump?

 Variables: how do we know we’re not overriding the
program area?

 Readability: it’s hard to remember instructions as
numbers.

 The solution: a higher level programming
language!!

 © Boaz Kantor, IDC

The symbolic VIC code

 It’s a higher level programming language:

 We use symbols instead of memory addresses.

 The instructions are in English.

 The source code is not executable. It needs to be
translated into the 3-digit VIC code.

 The translation is called.. Compilation!

© Boaz Kantor, IDC

The VIC assembler

 Compiles the symbolic language to VIC code:

 Translates English instructions to numbers.

 Translates symbols to memory cells.

© Boaz Kantor, IDC

Loops, example (symbolic VIC)
3-digit VIC code Symbolic

398 // load zero

492 // initialize summation

800 // read the first number

490 // store as the number we summarize

800 // read the second number

491 // store as loop counter

390 // load the number

192 // add to the summation

492 // store the result

391 // load the loop counter

299 // loop-counter--

491 // store the new loop counter

706 // if (loop-counter>0) loop

392 // load the final summation

900 // write to output

INIT:

 Load ZERO

 Store summation

 Read

 Store number

 Read

 Store counter

LOOP:

 Load number

 Add summation

 Store summation

 Load counter

 Sub ONE

 Store counter

 Gotop LOOP

END:

 Load summation

 Write

© Boaz Kantor, IDC

Hacking (if we have time)

Code obfuscation Buffer overflow

 Writing a program that
writes itself:
 Write an instruction which

writes another instruction
somewhere else in the code.

 Modify another program
while running it:
 Allocate space for user input.
 Don’t check the length of the

input.
 The user input can be too long,

while the overflowing
characters are instructions,
which will overwrite the
instructions after the allocated
memory.

 © Boaz Kantor, IDC

