
Inheritance Tips
When to use what,

when designing or using inheritance.

© Boaz Kantor, IDC Herzliya

Designing
Classes, abstract classes and interfaces

© Boaz Kantor, IDC Herzliya

Just a class, no inheritance

Car (concrete class)

© Boaz Kantor, IDC Herzliya

Just a class
o Write a class when it reflects an object in your solution.

public class Car {

 private String licenseNumber;

 private String color;

 public String getLicenseNumber() {

 return licenseNumber;

 }

 public String getColor() {

 return color;

 }

}

© Boaz Kantor, IDC Herzliya

Simple inheritance

Car (concrete class)

ManualGearCar (concrete class)

extends

© Boaz Kantor, IDC Herzliya

Simple inheritance
o Extend a class when you want to override or

extend functionality.
public class ManualGearCar extends Car {

 private int gearState;

 public void changeGear(int newGear) {

 gearState = newGear;

 }

}

© Boaz Kantor, IDC Herzliya

Abstract classes
Vehicle

(abstract class)

Car (concrete class)

ManualGearCar (concrete class)

extends

Bicycle (concrete class)

extends

© Boaz Kantor, IDC Herzliya

Abstract classes
o Write an abstract class if you don’t want it to be instantiated.
public abstract class Vehicle {

 private String color;

 public String getColor() {

 return color;

 }

 public abstract void stop();

}

public class Car extends Vehicle {

 private String licenseNumber;

 public String getLicenseNumber() {

 return licenseNumber;

 }

 public void stop() {

 hitBreaksPedal();

 }

}

© Boaz Kantor, IDC Herzliya

Abstract classes (cont’d)
public abstract class Vehicle {

 private String color;

 public String getColor() {

 return color;

 }

 public abstract void stop();

}

public class Bicycles extends Vehicle {

 public void stop() {

 pullBothBreakHandles();

 }

}

© Boaz Kantor, IDC Herzliya

Interfaces
Vehicle

(abstract class)

Car (concrete class)

EngineBased

(interface)

ManualGearCar (concrete class)

ChainSaw (concrete class)

extends

implements

implements

Bicycle (concrete class)

extends

© Boaz Kantor, IDC Herzliya

Interfaces
o Write an interface for API-only classes.
public interface EngineBased {

 void startEngine();

 void stopEngine();

}

public class Car extends Vehicle implements EngineBased {

 private String licenseNumber;

 public String getLicenseNumber() {

 return licenseNumber;

 }

 public void stop() {

 hitBreaksPedal();

 }

 public void startEngine() { switchKey(); }

 public void stopEngine() { switchKey(); }

}

public class Bicycles extends Vehicle { (no change)

© Boaz Kantor, IDC Herzliya

Interfaces (cont’d)
public interface EngineBased {

 void startEngine();

 void stopEngine();

}

public class ChainSaw implements EngineBased {

 void startEngine() {

 pullCordReallyStrong();

 }

 void stopEngine() {

 clickStopButton();

 }

}

© Boaz Kantor, IDC Herzliya

Class Diagram
Vehicle

(abstract class)

Car (concrete class)

EngineBased

(interface)

ManualGearCar (concrete class)

ChainSaw (concrete class)

extends

implements

implements

Bicycle (concrete class)

extends

© Boaz Kantor, IDC Herzliya

Using
Casting & polymorphism

© Boaz Kantor, IDC Herzliya

public class CellularPhone {

 public void dial(String number) {

 // some implementation

 }

 public void recharge() {

 // connect to recharger

 }

}

public class IPhone extends CellularPhone {

 // overriding a method

 public void dial(String number) {

 // iPhone specific implementation

 }

 // extending a method

 public void runApplication(String appName) {

 // start the application

 }

} © Boaz Kantor, IDC Herzliya

Polymorphism
o Consider the following method:

public void do(CellularPhone phone) {

 phone.recharge();

 phone.dial(“1-800-JAVA”);

 phone.runApp(“TextIt”);

}

o These represent the 3 basic scenarios:

o recharge() is implemented only in CellularPhone.

o dial() is implemented in CellularPhone and overridden in
IPhone.

o runApp() is implemented only in Iphone.

© Boaz Kantor, IDC Herzliya

Always think!
o Will it compile?

o What is the reference type?

o Does it have such a method?

o What will run?
o What is the current object in memory, referenced by the reference

variable?

o Does it implement the method?

o Examples of different object types in runtime:

do(new CellularPhone());

do(new IPhone());

© Boaz Kantor, IDC Herzliya

phone.recharge()
public void do(CellularPhone phone) {

 phone.recharge();

o Reminder: recharge() is implemented only in CellularPhone.

o Will it compile?

o What is the reference type? CellularPhone

o Does it have such a method? Yes.

o Hurray! It will compile!

o What will run?

o What is the current object in memory? Does it implement the method?

o If the object is of type CellularPhone, then yes.

o If the object is of type IPhone, then no.

o The implementation in CellularPhone.recharge()

 © Boaz Kantor, IDC Herzliya

phone.dial()
public void do(CellularPhone phone) {

 phone.dial(“1-800-JAVA”);

o Reminder: dial() is implemented in CellularPhone and overridden in IPhone.

o Will it compile?

o What is the reference type? CellularPhone

o Does it have such a method? Yes.

o Hurray! It will compile!

o What will run?

o What is the current object in memory? Does it implement the method?

o If the object is of type CellularPhone, then yes.

o If the object is of type IPhone, then yes.

o The implementation of the object in memory will run.

 © Boaz Kantor, IDC Herzliya

phone.runApp()
public void do(CellularPhone phone) {

 phone.runApp(“TextIt”);

o Reminder: runApp() is implemented only in IPhone.

o Will it compile?

o What is the reference type? CellularPhone

o Does it have such a method? No.

o The code will not compile.

o The only way to compile it is by telling the compiler “look at phone as a
reference to IPhone“.

o It’s done by casting:

public void do(CellularPhone phone) {

 ((IPhone)phone).runApp(“TextIt”);

© Boaz Kantor, IDC Herzliya

casting
public void do(CellularPhone phone) {

 ((IPhone)phone).runApp(“TextIt”);

o Will it compile?

o What is the reference type? IPhone

o Does it have such a method? Yes.

o Hurray! It will compile!

o What will run?

o What is the current object in memory? Does it implement the method?

o If the object is of type IPhone, then yes.

o If the object is of type CellularPhone, then no, and we get a
ClassCastException.

o We avoid such an exception by making sure the object in memory is of type
IPhone.

© Boaz Kantor, IDC Herzliya

instanceof
public void do(CellularPhone phone) {

 if (phone instanceof IPhone) {

 ((IPhone)phone).runApp(“TextIt”);

 }

o What will run?

o What is the current object in memory? Does it
implement the method?

o If the object is of type IPhone, then yes.

o If the object is of type CellularPhone, then the

condition will be false, and the line will be ignored.

© Boaz Kantor, IDC Herzliya

You must admit that
inheritance & polymorphism is

beautiful and romantic

If you admit it, welcome to the geeks club 

© Boaz Kantor, IDC Herzliya

