16-Dec-10

Recap

Exception is a class.
Java comes with many, we can write our own.
The Exception objects, along with some Java-specific structures, allow
us to manage exceptional cases in our code.
These keywords make the mechanism:
* try, catch, throw, throws
There are two kinds of exceptions:
Checked (non-runtime): occur when we can anticipate the error.
Unchecked (runtime): when we can'’t anticipate (bug).

(a third type called “error” is not part of the syllabus).

© 2010 Boaz Kantor, IDC Herzliya

Catching

Consider the following method:

What happens if:
There is already a read-only file with that name2
There is a folder with that name?
The program encounters security difficulties writing the text in the file?
There is any other problem of opening such a file for writing?
The hard disk s full2
What happens if the methods can’t do what they are intended to do?

© 2010 Boaz Kantor, IDC Herzliya

Let’s look @t the AP]

public PileWriter(Stzing fileName)
throws IOExcention

Constructs a FileWriter object given a fle name.

Parameters:
£11eName - String The system-dependent Senamme.

- dsts but s a directory rather than a regular i, does
ot exist but cannot be created, or cannot be opened for any other reason

public veid write(Szring str)
I9fxoeouion

throws
Writes a striog.

Parameters:
a5z - Strng to be written

- If a0 1O error occurs
©2010 Boaz Kantor, IDC Herzliya

16-Dec-10

Cafching

© We should catch these exceptions, like this:

Catching

© We can include several instructions in the same try block:

© ‘e’ holds a reference to the exception object, which was instantiated (and
thrown) by the throwing method.

© 2010 Boaz Kantor, IDC Herzliya

Mere examples

Write a method safecharat (String s, int i) that returns the
character located at index i in s.

Sounds easy:

public static char safeCharAt(String s, int i) {
return s.charAt(i);

© 2010 Boaz Kantor, IDC Herzliya 7

16-Dec-10

But let’s look at the APl of string.charat():

Note there is no “throws”
section in the method | por

i JE—
signature! T ¥ Retums the char vahie at the specified index. An index ranges from o to. - 1.The
first chax value of the sequence is at index , the next at index 2, and so on, as for amay
indexing,

Ifthe

= value specified by the index s a surogate, the surrogate value i retamed

Spacified by:
in iterace ¢

Parameters:

dex - the index of the char value

N Returns:

may throw an exception the chas value at the specified index of this string. The first
after all. Thromw
Let's go to the APl of |

IndexOu‘OfBoundsExcepﬂon“

But it seems that the method
= vahie is atindex 0.

2 - fthe snaex argument s negative or not less than the

leagth of this siring.

© 2010 Boaz Kantor, IDC Herzliya 8

Runtime (vnchecked) exceplions

Here is what we learn from this:
java.lang: No need to import
anything. by
Hierarchy: top is general, bottom (546 IndexOutOfBoundsException
is specific. So:

Everything is an Object

We can throw this object

It's a throwable object of type
exception

It's a runtime exception

als
L Sava- 1ang. IndexcatorBoundsZxception
All Implemented Interfaces:

Serializable
There are more runfime exceptions

of type Direct Known Subclasses:
IndexOwOBoumdsE glndexQuC

IndexoutOfBoundsException.

© 2010 Boaz Kantor, IDC Herzliya 9

Catehing @ runiime exceplion

Java allows us not to catch it. Consider the following main method:

What happens here, is that s.charat (i) throws an
IndexOutOfBoundsException, but since safeCharAt doesn’t catch it,
it is rethrown to the calling method, main.

© 2010 Boaz Kantor, IDC Herzliya 0

16-Dec-10

lgnoring exceplions

‘We can always ignore an exception and
have it rethrown to our calling method.
We then become the throwing method.
By doing so, we take the risk of
exceptions reaching the main method.

If the main method throws an exception,
our program crashes.

We wish to avoid that.

As a rule, we always catch an exception
in a method that is, logically, the one in
charge of handling such an exception.

© 2010 Boaz Kantor, |

Where to caich them?

As a rule, we always catch
an exception in a method
that is, logically, the one in
charge of handling such an
exception.

© 2010 Boaz Kantor, |

Ignering checked (neon-runtime) excepiions

Let's get back to the first example:

public static void saveTextToFile(String filename, String text) {
FileWriter writer = new FileWriter (filename);
writer.write (text);

16-Dec-10

Although we already saw how to catch the
we decide to ignore them.

It will not compile.

As we saw, ignoring an exception rethrows it while making the calling method as the new
throwing method. Java enforces that if we throw a checked exception we have to declare
that in the method signature.

This is what the new method signature would look like, if we decided to ignore the
exception and let it be rethrown to the calling method:

ceptionthrown by the methods, let's say

public static void saveTextToFile(String filename, String text) throws IOException {

© 2010 Boaz Kantor, IDC Herzliya 3

Threwing en exceplion manvally

Sometimes we realize, in our own method, that something went wrong, which we
can't handle.
If we want the caller method to handle this issue, we throw an exception.
To throw an exception, we must follow these instructions:
Find an appropriate exception class, or write a custom exception class of our own.
Create a new exception object with the keyword ‘new’.
Use the non-default exception constructors to provide information about the issue.
Throw the reference to that exception object with the keyword ‘throw'.
If it's a checked exception, change the method signature to include the keyword ‘throws'.
Javadoc the ion in the method d\ i
Example:
throw new IllegalArgumentException(“Invalid parameter value “ + someParam) ;

© 2010 Boaz Kantor, IDC Herzliya 14

Exemple, threwing @ runiime exeepition

s the non-blank string which includes the character
i the non-negative index of the character within the string
the character located at index i within string s, capitalized
IllegalArgumentException if s is null or blank
IllegalhrgumentException if i is outside the string boundaries

public static char charAtCapital(String s, int i) (
if (s == null || s.trim().length() == 0) (
throw new IllegalArgumentException ("String is null or empty");
+
i€ (1< 0 |1 1 >= s.length() {
throw new IllegalArgumentException("Illegal index " + 1)
}

return Character. tolpperCase (s.charAt (i))

© 2010 Boaz Kantor, IDC Herzliya 15

16-Dec-10

Example, throwing @ checked exeepiion

TBD

© 2010 Boaz Kantor, IDC Herzliya 16

