
Boaz Kantor

Introduction to Computer Science

IDC Herzliya

• Exception is a class.

• Java comes with many, we can write our own.

• The Exception objects, along with some Java-specific structures, allow
us to manage exceptional cases in our code.

• These keywords make the mechanism:
• try, catch, throw, throws

• There are two kinds of exceptions:

• Checked (non-runtime): occur when we can anticipate the error.

• Unchecked (runtime): when we can‟t anticipate (bug).
• (a third type called “error” is not part of the syllabus).

© 2010 Boaz Kantor, IDC Herzliya 2

• Consider the following method:

• What happens if:
• There is already a read-only file with that name?

• There is a folder with that name?

• The program encounters security difficulties writing the text in the file?

• There is any other problem of opening such a file for writing?

• The hard disk is full?

• What happens if the methods can’t do what they are intended to do?

public static void saveTextToFile(String filename, String text) {

 FileWriter writer = new FileWriter(filename);

 writer.write(text);

}

© 2010 Boaz Kantor, IDC Herzliya 3

© 2010 Boaz Kantor, IDC Herzliya 4

• We should catch these exceptions, like this:

 public static void saveTextToFile(String filename, String text) {
 FileWriter writer = null;

 try {

 writer = new FileWriter(filename);

 } catch (IOException e) {

 System.out.println("Can't open file for writing");

 return;

 }

 try {

 writer.write(text);

 } catch (IOException e) {

 System.out.println("Can't write to file");

 return;

 }

}
© 2010 Boaz Kantor, IDC Herzliya 5

• We can include several instructions in the same try block:

• ‘e’ holds a reference to the exception object, which was instantiated (and
thrown) by the throwing method.

public static void saveTextToFile(String filename, String text) {

 FileWriter writer = null;

 try {

 writer = new FileWriter(filename);

 writer.write(text);

 } catch (IOException e) {

 System.out.println("Can't open file or write to file");

 return;

 }

}

© 2010 Boaz Kantor, IDC Herzliya 6

• Write a method safeCharAt(String s, int i) that returns the

character located at index i in s.

• Sounds easy:

public static char safeCharAt(String s, int i) {

 return s.charAt(i);

}

© 2010 Boaz Kantor, IDC Herzliya 7

• But let‟s look at the API of String.charAt():

 Note there is no “throws”

section in the method

signature!

But it seems that the method

may throw an exception

after all.

Let‟s go to the API of

IndexOutOfBoundsException

© 2010 Boaz Kantor, IDC Herzliya 8

• Here is what we learn from this:
• java.lang: No need to import

anything.

• Hierarchy: top is general, bottom
is specific. So:

• Everything is an Object

• We can throw this object

• It‟s a throwable object of type
exception

• It’s a runtime exception

• There are more runtime exceptions
of type
IndexOutOfBoundsException.

© 2010 Boaz Kantor, IDC Herzliya 9

• Java allows us not to catch it. Consider the following main method:

• What happens here, is that s.charAt(i) throws an
IndexOutOfBoundsException, but since safeCharAt doesn‟t catch it,
it is rethrown to the calling method, main.

public static char safeCharAt(String s, int i) {

 return s.charAt(i);

}

public static void main(String[] args) {

 System.out.println(safeCharAt("Hello, world!", -1));

}

© 2010 Boaz Kantor, IDC Herzliya 10

• We can always ignore an exception and
have it rethrown to our calling method.

• We then become the throwing method.

• By doing so, we take the risk of
exceptions reaching the main method.

• If the main method throws an exception,
our program crashes.

• We wish to avoid that.

• As a rule, we always catch an exception
in a method that is, logically, the one in
charge of handling such an exception.

public char charAt(int i) {

 // throws an exception

}

public static void main(String[] args) {

 f();

}

public static char safeCharAt(String s, int i) {

 return s.charAt(i);

}

public void g() {

 safeCharAt("Hello, world!", -1);

}

public void f() {

 g();

}

© 2010 Boaz Kantor, IDC Herzliya 11

• As a rule, we always catch

an exception in a method

that is, logically, the one in

charge of handling such an

exception.

public char charAt(int i) {

 // throws an exception

}

public static void main(String[] args) {

 f();

}

public static char safeCharAt(String s, int i) {

 try {

 return s.charAt(i);

 } catch (IndexOutOfBoundsException e) {

 return '\n';

 }

}

public void g() {

 safeCharAt("Hello, world!", -1);

}

public void f() {

 g();

}

© 2010 Boaz Kantor, IDC Herzliya 12

• Let‟s get back to the first example:

• Although we already saw how to catch the IOException thrown by the methods, let‟s say
we decide to ignore them.

• It will not compile.

• As we saw, ignoring an exception rethrows it while making the calling method as the new
throwing method. Java enforces that if we throw a checked exception we have to declare
that in the method signature.

• This is what the new method signature would look like, if we decided to ignore the
exception and let it be rethrown to the calling method:

public static void saveTextToFile(String filename, String text) {

 FileWriter writer = new FileWriter(filename);

 writer.write(text);

}

public static void saveTextToFile(String filename, String text) throws IOException {

© 2010 Boaz Kantor, IDC Herzliya 13

• Sometimes we realize, in our own method, that something went wrong, which we
can‟t handle.

• If we want the caller method to handle this issue, we throw an exception.

• To throw an exception, we must follow these instructions:
• Find an appropriate exception class, or write a custom exception class of our own.

• Create a new exception object with the keyword „new‟.

• Use the non-default exception constructors to provide information about the issue.

• Throw the reference to that exception object with the keyword „throw‟.

• If it‟s a checked exception, change the method signature to include the keyword „throws‟.

• Javadoc the exception in the method documentation.

• Example:
• throw new IllegalArgumentException(“Invalid parameter value “ + someParam);

© 2010 Boaz Kantor, IDC Herzliya 14

/**

 * Returns a specific character in a specific string, capitalized.

 * @param s the non-blank string which includes the character.

 * @param i the non-negative index of the character within the string.

 * @return the character located at index i within string s, capitalized.

 * @throws IllegalArgumentException if s is null or blank.

 * @throws IllegalArgumentException if i is outside the string boundaries.

 */

public static char charAtCapital(String s, int i) {

 // validate parameters

 if (s == null || s.trim().length() == 0) {

 throw new IllegalArgumentException("String is null or empty");

 }

 if (i < 0 || i >= s.length()) {

 throw new IllegalArgumentException("Illegal index " + i);

 }

 return Character.toUpperCase(s.charAt(i));

}

© 2010 Boaz Kantor, IDC Herzliya 15

• TBD

© 2010 Boaz Kantor, IDC Herzliya 16

