

Recap

* Exception is a class.
* Java comes with many, we can write our own.

* The Exception objects, along with some Java-specific structures, allow
us to manage exceptional cases in our code.

* These keywords make the mechanism:
° try, catch, throw, throws

* There are two kinds of exceptions:
* Checked (non-runtime): occur when we can anticipate the error.

* Unchecked (runtime): when we can’t anticipate (bug).
* (a third type called “error” is not part of the syllabus).

© 2010 Boaz Kantor, IDC Herzliya

Catching

* Consider the following method:

public static void saveTextToFile (String filename, String text) {
FileWriter writer = new FileWriter (filename) ;

writer.write (text) ;

* What happens if:
* There is already a read-only file with that name?
* There is a folder with that name?
* The program encounters security difficulties writing the text in the file2
* There is any other problem of opening such a file for writing?
* The hard disk is full?

* What happens if the methods can’t do what they are intended to do?

© 2010 Boaz Kantor, IDC Herzliya

Let’s look at the API

public FileWriter(String fileName)
» throws IOException

Constructs a FileWriter object given a file name.

Parameters:
fileName - String The system-dependent filename.
Throws:

IOException - if the named file exists but is a directory rather than a regular file, does
L not exist but cannot be created, or cannot be opened for any other reason

| public void write(Strxing str)
throws IOException

Writes a string.

Parameters:
str - String to be written
Throws:

IOException - If an IO error occurs

Catching

* We should catch these exceptions, like this:

public static void saveTextToFile (String filename, String text) {
FileWriter writer = null;

try {
writer = new FileWriter (filename) ;

} catch (IOException e) {
System.out.println("Can't open file for writing"),

return;

writer.write (text) ;

(IOException e) {
System.out.println('"Can't write to file");,
return;

Catching

* We can include several instructions in the same try block:

public static void saveTextToFile (String filename, String text) {
FileWriter writer = null;
try {
writer = new FileWriter (filename) ;
writer.write (text) ;

} catch (IOException e) {

System.out.println('"Can't open file or write to file'");,
return;

‘e’ holds a reference to the exception object, which was instantiated (and
thrown) by the throwing method.

© 2010 Boaz Kantor, IDC Herzliya 6

More examples

* Write a method safeCharAt (String s, int i) that returns the
character located at index i in s.

* Sounds easy:

public static char safeCharAt(String s, int i) {

return s.charAt (i) ;

}

© 2010 Boaz Kantor, IDC Herzliya

* But let’s look at the APl of string.charat():

Note there is no “throws”
section in the method public char charAt(int index)

SlgnCﬂ'U rel Returns the char value at the specified index. An index ranges from 0 to 1ength() - 1. The
first char value of the sequence is at index 0, the next at index 1, and so on, as for array
indexing.

If the chaxr value specified by the index is a surrogate, the surrogate vahe is returned.

Specified by:
charit in interface CharSequence

Parameters:
index - the index of the char value.
Returns:
may throw an exce ption the char value at the specified index of this string. The first char value is at index 0.

after all. Throws: _ _ _
; '_1\ IndexOutOfBoundsException - if the index argument is negative or not less than the
Let’s go to the API of)/ length of this string.

IndexOutOfBoundsException!

But it seems that the method

© 2010 Boaz Kantor, IDC Herzliya 8

Runtime (unchecked) exceptions

* Here is what we learn from this:

* java.lang: No need to import
anything.

java.lang

PO TR UL CIA UL (Cass IndexOutOfBoundsException
is specific. So:

* Everything is an Object == LBl LRI

L java.lang.Throwable

* We can throw this object | o S SRR
. L5 lang.RuntimeExcepti
° 1 ava.lang. Runtimerxception
" 5 ﬂ'!rowable ObIeCT Of ’rype |—java.lang.IndexOutOfBoundsException
exception

* It's a runtime exception pll Implemented Interfaces:

Serializable
* There are more runtime exceptions
of type Direct Known Subclasses:
IndexOutOfBoundsException. ArrayIndexOutOfBoundsException, StringlndexOutOfBoundsException

© 2010 Boaz Kantor, IDC Herzliya 9

Catching a runtime exception

* Java allows us not to catch it. Consider the following main method:

public static void main(String[] args) {
System.out.println (safeCharAt ("Hello, world!", -1));,

}

public static char safeCharAt(String s, int i) ({
return s.charAt(i); \},\

}

* What happens here, is that s.charat (i) throws an
IndexOutOfBoundsException, but since safeCharAt doesn’t catch it,
it is rethrown to the calling method, main.

© 2010 Boaz Kantor, IDC Herzliya 10

Ignoring exceptions

We can always ignore an exception and
have it rethrown to our calling method.

We then become the throwing method.

By doing so, we take the risk of
exceptions reaching the main method.

If the main method throws an exception,
our program crashes.

We wish to avoid that.

As a rule, we always catch an exception
in a method that is, logically, the one in
charge of handling such an exception.

© 2010 Boaz Kantor,

r
CrashReportTest MFC Application

CrashReportTest MFC Application has encountered a ..’}
problem and needs to close. We are sonry for the v
inconvenience.

If you were in the middle of something, the information you were working on
ight be lost.

ft about this problem.
rror report that you can sel
ial and anonymous.

nd to us. We will reat

To see what data this eror report contains, click here.

Debug Send Error Report

public static void main (String[] args) {
£();
}

public void £() {

g();
}

public void g() {
safeCharAt ("Hello, world!", -1);

}

public static char safeCharAt(String s, int i)
return s.charAt(i);

}

public char charAt(int i) ({

// throws an exception

1
!

{

Where to catch them?

public static void main (String[] args) {

£();

* As arule, we always catch)
an exception in a method sk St 0
that is, logically, the one in :
charge of handling such an [F R A0y

o }
exception.

public static char safeCharAt(String s, int i) {
try {
return s.charAt (i) ;
} catch (IndexOutOfBoundsException e) {
3 return '\n';

}

‘e, public char charAt(int i) {
IREEE // throws an exception
© 2010 Boaz Kantor, |B

Ignoring checked (non-runtime) exceptions

* Let’s get back to the first example:

public static void saveTextToFile (String filename, String text) ({
FileWriter writer = new FileWriter (filename) ;

writer.write (text) ;

* Although we already saw how to catch the 10Exceptionthrown by the methods, let’s say
we decide to ignore them.

* It will not compile.

* As we saw, ignoring an exception rethrows it while making the calling method as the new
throwing method. Java enforces that if we throw a checked exception we have to declare
that in the method signature.

* This is what the new method signature would look like, if we decided to ignore the
exception and let it be rethrown to the calling method:

© 2010 Boaz Kantor, IDC Herzliya 13

Throwing an exception manually

Sometimes we realize, in our own method, that something went wrong, which we

can’t handle.
* If we want the caller method to handle this issue, we throw an exception.
* To throw an exception, we must follow these instructions:

Find an appropriate exception class, or write a custom exception class of our own.
Create a new exception object with the keyword ‘new’.

Use the non-default exception constructors to provide information about the issue.

Throw the reference to that exception object with the keyword ‘throw'.

If it’s a checked exception, change the method signature to include the keyword ‘throws’.
Javadoc the exception in the method documentation.

* Example:

throw new IllegalArgumentException(“Invalid parameter value “ + someParam) ;

© 2010 Boaz Kantor, IDC Herzliya 14

Example, throwing a runtime exception

*

Returns a specific character in a specific string, capitalized.

@param s the non-blank string which includes the character.

@param i the non-negative index of the character within the string.
@return the character located at index i within string s, capitalized.
@throws IllegalArgumentException if s is null or blank.

@throws IllegalArgumentException if i is outside the string boundaries.

% X o ok X % o

~

public static char charAtCapital (String s, int i) {

// validate parameters
if (s == null || s.trim().length() == 0) {
throw new IllegalArgumentException("String is null or empty");

}
if (1 < 0 || i >= s.length()) {
throw new IllegalArgumentException("Illegal index " + i)

return Character. toUpperCase (s.charAt(i))

© 2010 Boaz Kantor, IDC Herzliya

ample, throwing a checked exception

