
26-Dec-09

1

“Bad programmers worry about the code. Good
programmers worry about data structures and
their relationships.”. - Linus Torvalds, 2006

Boaz Kantor

Introduction to Computer Science,

Fall semester 2009-2010

IDC Herzliya

• Background theory, recap

• Why data structures

• Abstraction vs. Implementation

• How to choose our data
structure

• Data structure characteristics

• Linked list

• Exercise: “Barnes & Noble”:
• Array implementation

• Linked list implementation

• LinkedList.addElement depiction

• Queue

• Array implementation

• Linked list implementation

• Summary

© Boaz Kantor, IDC Herzliya

© Boaz Kantor, IDC Herzliya

26-Dec-09

2

• In order to develop an application or feature, we consider:
• UI and I/O

• Algorithm

• Data handling

• Arrays are a simple data structure: linear, homogenous, direct access.

• These traits are sometimes very limiting and inefficient;
• We can‟t define relations between elements, memory allocation is not

dynamic, all the cells look the same, etc..

 © Boaz Kantor, IDC Herzliya

• Abstraction

• What we want the data structure to do

• Implementation

• How it should be done

© Boaz Kantor, IDC Herzliya

Abstraction Implementation

Stack Array

Stack Linked list

Stack.pop() return array[--size];

Stack.pop() temp = head;

head = head.next;

return head;

• We need to choose:

• Data types and their relationships

• Data structure

• Choosing data types is an OO task.

• To choose a data structure, ask these questions:

• How dynamic is the collection?

• According to what will we want to add/retrieve elements?

• What are the performance requirements for adding/retrieving elements?

© Boaz Kantor, IDC Herzliya

26-Dec-09

3

Data structure

• Array

• Linked list

• Stack

• Queue

• Graph

• Tree

• Hash, dictionary, maps, …

Characteristics

• Static size, direct access

• Dynamic size, iterative

• LIFO, access only to last

• FIFO, access only to first

• n:n relationships

• 1:n relationships

• Future

© Boaz Kantor, IDC Herzliya

• One of the most basic data structures

• The principal:
• Keep only a reference to the first element („head‟)

• Each element points to the next one

• The last element points to null

• Dynamic size:
• Grows when adding elements, shrinks when removing elements

• Unlimited number of elements

• To add an element, “play” with references

• No direct access:
• To get to an element, start with the head and iterate the entire collection

© Boaz Kantor, IDC Herzliya

Depending on your encapsulation design, the abstraction may work
either with Data or directly with Element.

• void isEmpty()

• void insertAtBeginning(Element element)

• void append(Element element)

• Element getFirst()

• Element getLast()

• Element getElement(Data data)

• void clear()

© Boaz Kantor, IDC Herzliya

26-Dec-09

4

© Boaz Kantor, IDC Herzliya

class ListElement {

 private SomeType data;

 private ListElement next = null;

 // constructors

 // ‘data’ setters and getters

 // ‘next’ setters and getters

}

element 1

data

next

element 2

data

next

element 3

data

next

null

© Boaz Kantor, IDC Herzliya

class LinkedList {

 private ListElement head = null;

 // is the list empty?

 // add element (to beginning, end, or anywhere)

 // remove element

 // get first/last/specific element

}

element 1

data

next

element 2

data

next

element 3

data

next

null

list 1

head

© Boaz Kantor, IDC Herzliya

26-Dec-09

5

• Exercise: “Barnes & Noble” has asked you to rewrite their

ordering system (they‟re paying a lot).

• They want to provide you with book orders. You need to keep

these orders.

• Their storage manager wants to retrieve the orders, oldest

order first, so they can process the order and deliver the books.

• Plan:

• Provide both users with a book orders data type.

• Provide B&N with an interface for adding orders.

• Provide the storage manager with an interface for getting the next order.

© Boaz Kantor, IDC Herzliya

Assume classes Book and Customer (provided by B&N)

public class BookOrder {

 private Book book = null;

 private Customer customer = null;

 // constructors, setters and getters

}

Step 1.1: implement.

© Boaz Kantor, IDC Herzliya

public class OrdersCollection {

 // adds an order to the collection

 public void addOrder(BookOrder order)

 // returns and removes the oldest order

 public BookOrder getNextOrder()

}

© Boaz Kantor, IDC Herzliya

http://en.wikipedia.org/wiki/Software_development_kit

26-Dec-09

6

© Boaz Kantor, IDC Herzliya

// in this implementation, the oldest order is at the end of the array

public class OrdersCollection {

 private static final int MAX_ORDERS = 50000;

 private BookOrder[] orders = new BookOrder[MAX_ORDERS];

 private int numberOfOrders = 0;

 // adds an order to the collection

 public void addOrder(BookOrder order) {

 orders[numberOfOrders++] = order;

 }

 // returns and removes the oldest order

 public BookOrder getNextOrder() {

 // see next slide..

© Boaz Kantor, IDC Herzliya

// returns and removes the oldest order

public BookOrder getNextOrder() {

 BookOrder order = orders[0];

 // shift all orders one cell to the left

 System.arraycopy(orders, 1,

 orders, 0,

 numberOfOrders);

 numberOfOrders--;

 return order;

}

© Boaz Kantor, IDC Herzliya

26-Dec-09

7

© Boaz Kantor, IDC Herzliya

• Remember:

• The list holds a reference only to the head.

• Each element references the next one.

• This means that our data type is not good enough (no „next‟
member)

• We have two options:

1. Add a „next‟ field to our existing class (convert BookOrder to
an element)

2. “Wrap” our existing class with an „element‟ class.

© Boaz Kantor, IDC Herzliya

public class BookOrder {

 private Book book = null;

 private Customer customer = null;

 // constructors, getters and setters

}

© Boaz Kantor, IDC Herzliya

26-Dec-09

8

public class BookOrder {

 private Book book = null;

 private Customer customer = null;

 // constructors, getters and setters

}

© Boaz Kantor, IDC Herzliya

• If we don‟t have access to the data type (if someone else is

responsible for it), we have to use option #2.

• In order to use option #1, we have to redesign our class as a

list element:

• Name it BookOrderElement

• Not expose it to customers, they don‟t care about elements.

• Option #2 is usually clearer and conforming with OOD.

© Boaz Kantor, IDC Herzliya

© Boaz Kantor, IDC Herzliya

// in this implementation, the oldest order is at the beginning of the array

public class OrdersCollection {

 BookOrderElement head = null;

 // adds an order to the collection

 public void addOrder(BookOrder order) {

 BookOrderElement newOrder = new BookOrderElement(order);

 newOrder.setNext(this.head);

 head = newOrder;

 }

 // returns and removes the oldest order

 public BookOrder getNextOrder() {

 // see next slide..

}

26-Dec-09

9

© Boaz Kantor, IDC Herzliya

public BookOrder getNextOrder() {

 // TODO handle an empty list

 BookOrderElement previousElement = head;

 BookOrderElement currentElement = head;

 // TODO handle a special case where there is only one order in the list

 while (currentElement.getNext() != null) {

 previousElement = currentElement;

 currentElement = currentElement.getNext();

 }

 // remove the element from the list and return its data

 previousElement.setNext(null);

 return currentElement.getData();

}

© Boaz Kantor, IDC Herzliya

© Boaz Kantor, IDC Herzliya

BookOrderElement

data

next

null

list 1

head

BookOrder 1

Customer

Book

BookOrder 2

Customer

Book

BookOrderElement

data

next

order

Customer

Book

26-Dec-09

10

© Boaz Kantor, IDC Herzliya

BookOrderElement

data

next

null

list 1

head

BookOrder 1

Customer

Book

BookOrder 2

Customer

Book

BookOrderElement

data

next

newOrder

BookOrder data

next

order

Customer

Book

null

© Boaz Kantor, IDC Herzliya

BookOrderElement

data

next

null

list 1

head

BookOrder 1

Customer

Book

BookOrder 2

Customer

Book

BookOrderElement

data

next

newOrder

BookOrder data

next

order

Customer

Book

© Boaz Kantor, IDC Herzliya

BookOrderElement

data

next

null

list 1

head

BookOrder 1

Customer

Book

BookOrder 2

Customer

Book

BookOrderElement

data

next

newOrder

BookOrder data

next

order

Customer

Book

26-Dec-09

11

© Boaz Kantor, IDC Herzliya

• FIFO: First In First Out

• Like in real life: “first come first served”

• The abstraction:

• boolean isEmpty()

• void enqueue(Element element)

• Element dequeue(); // sometimes split in two:

• void dequeue()

• Element peek()

© Boaz Kantor, IDC Herzliya

• We can either use an array or our own linked list.

• If the queue size is finite/small/known in advance, we‟ll use an

array. Otherwise, we‟ll be using a linked list.

• Upcoming: both implementations

© Boaz Kantor, IDC Herzliya

26-Dec-09

12

public class Queue {

 private Element[] elements = new Element[MAX];

 private int numberOfElements = 0;

 public void enqueue(Element element) {

 elements[numberOfElements++] = element;

 }

 public Element dequeue() {

 Element result = elements[0];

 // shift all elements to the left…

 numberOfElements--;

 return result;

 }

 public boolean isEmpty() {

 return numberOfElements == 0;

 }

}

© Boaz Kantor, IDC Herzliya

public class Queue {

 private LinkedList list = new LinkedList();

 public void enqueue(Element element) {

 list.insertAtBeginning(element);

 }

 public Element dequeue() {

 Element result = list.getFirst();

 list.remove(result);

 return result;

 }

 public boolean isEmpty() {

 return list.isEmpty();

 }

}

© Boaz Kantor, IDC Herzliya

• Arrays are inherent in the language

• Linked lists are based on custom classes

• Any other data structure can be implemented using:

• Arrays

• Lists

• Other data structures

• Always find the most suitable data structure to implement your new
data structure

• Always find the most suitable data structure to handle your data

© Boaz Kantor, IDC Herzliya

26-Dec-09

13

• Recall the book ordering system we wrote for Barnes & Noble:

• We used array/linked list directly

• A more suitable data structure would be the queue!

• Rewrite the Barnes & Noble ordering system using a queue

© Boaz Kantor, IDC Herzliya

Questions?

Boaz Kantor

Introduction to Computer Science,

Fall semester 2009-2010

IDC Herzliya

