
Collections & Data Structures

Boaz Kantor

Introduction to Computer Science

IDC Herzliya

ABSTRACTION VS. IMPLEMENTATION

2 © 2010 Boaz Kantor, IDC Herzliya

• Data structures provide both abstraction and implementation.

• Abstraction is the functionality

• Implementation is the internal collection structure

• Abstraction may provide FIFO, LIFO or other mechanisms.

• Implementation may be an array, a linked list of various types,
trees and graphs.

•Abstraction vs. Implementation

© 2010 Boaz Kantor, IDC Herzliya 3

ARRAY

• Implemented by a Java array.

• Advantage:

• Best performance for direct
access.

• Disadvantage:

• Only pre-determined size.

• Implemented as a collection of
elements.

• Each element pointing to the next.
• A List class pointing to ‘head’.
• Advantage:

• Dynamic memory allocation.
• Disadvantage:

• No direct access.
• Variations: doubly-linked list, keeping

a ‘tail’ reference, etc.

LINKED LIST

4 © 2010 Boaz Kantor, IDC Herzliya

•Implementation

QUEUE

• Provides FIFO abstraction.

• Can be implemented using a Linked
List or a Java array.

• Provides this functionality:

• Enqueue

• Dequeue

• IsEmpty

• Peek

• Clear

• Provides LIFO abstraction.

• Can be implemented using a Linked
List or a Java array.

• Provides this functionality:

• Push

• Pop

• IsEmpty

• Peek (or Top)

• Clear

STACK

5 © 2010 Boaz Kantor, IDC Herzliya

•Abstractions

GENERICS

6 © 2010 Boaz Kantor, IDC Herzliya

• Generics is a fundamental mechanism in Java.

• It allows writing data types with an additional internal data type.

• The internal data type can be chosen by the user (other programmer).

• For example:

• ArrayList is a list of references to objects of type Object.

• ArrayList<Character> is a list of references to objects of type Character.

• ArrayList<Clock> is a list of clocks.

• Writing generic collections is out of the scope of this course.

© 2010 Boaz Kantor, IDC Herzliya 7

•What is generics?

• Some classes come with
angle brackets in their
class definition API:

© 2010 Boaz Kantor, IDC Herzliya 8

•How to identify Generic classes

• When we instantiate an object of a generic type, we have to provide a class name

instead of that ‘E’:

Stack<Character> characterStack = new Stack<Character>();

• The API makes further use of ‘E’. When we read ‘E’ in the API, we should replace it

with the type we provided, in this case ‘Character’:

© 2010 Boaz Kantor, IDC Herzliya 9

•How to read generic API

• We can now refer to ‘E’ as ‘Character’ whenever it’s mentioned
in the API, without the need of casting.

Character c = characterStack.pop();

© 2010 Boaz Kantor, IDC Herzliya 10

•Using a generic type

EXAMPLE
Reversing the words in each line of a text file using a Stack<E>

11 © 2010 Boaz Kantor, IDC Herzliya

12 © 2010 Boaz Kantor, IDC Herzliya

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Scanner;

import java.util.Stack;

public class Example {

 public static void main(String[] args) {

 // local variables

 String filename = "Romeo.txt";

 StringBuilder sb = new StringBuilder();

 Stack<String> stack = new Stack<String>();

 Scanner lineScanner = null;

 // open the file for reading

 try {

 lineScanner = new Scanner(new File(filename));

 } catch (FileNotFoundException e) {

 System.out.println("Can't find the file " + filename);

 System.exit(0);

 }

13 © 2010 Boaz Kantor, IDC Herzliya

 // iterate the file line by line

 while (lineScanner.hasNextLine()) {

 // read word by word

 String line = lineScanner.nextLine();

 Scanner wordScanner = new Scanner(line);

 // push all the words to a stack

 while (wordScanner.hasNext()) {

 stack.push(wordScanner.next());

 }

 // pop all the words and build the result line

 while (stack.size() > 0) {

 sb.append(stack.pop()).append(" ");

 }

 sb.append("\n");

 }

 // we're done reading the entire file, print the result

 System.out.println(sb);

 }

}

14 © 2010 Boaz Kantor, IDC Herzliya

The

Tragedy

of

Romeo

and

Juliet

The

Tragedy

of Stack top

stack.push(“The”);

stack.push(“Tragedy”);

stack.push(“of”);

stack.push(“Romeo”);

stack.push(“and”);

stack.push(“Juliet”);

The

Tragedy

of

Romeo

sb.append(stack.pop() + “ “);

sb.append(stack.pop() + “ “);

sb == “Juliet and “;

Collections & Data Structures

Boaz Kantor

Introduction to Computer Science

IDC Herzliya

