Introduction to Computer Science
Shimon Schocken
IDC Herzliya

Lecture 8-3
Algorithms

Abu Abdullah
Muhammad ibn Musa al-Khwarizmi

Outline

Introduction

- Computational problems
- Algorithms

Search algorithms

- Sequential search
- Binary search
- Comparison

Running-time analysis

- Performance monitoring
- Order of ...

Sort algorithms

- Selection sort
- Insertion sort
- Merging
- Merge sort

Typical run-time functions

Proof techniques

- Induction
- Contradiction

Square root by binary search

- Algorithm
- Correctness proof

GCD algorithm

- Algorithm
- Correctness proof

Binary search

- Correctness proof

Proof by Induction

A predicate P is stated.
To prove by induction that P is true for every natural number n, we do as follows:

- Base step: We prove that P is true for 0 (or for 1)
- Inductive hypothesis: We assume that P is true for k
- Induction step: We prove that if P is true for k, it follows that P is true for $k+1$.

Example: prove that $1+2+3+\ldots+n=\frac{1}{2} n(n+1)$

Strong induction:

- Base case: Prove that P is true for 0 (or 1)
- Inductive hypothesis: Assume that $\mathrm{P}(\mathrm{i})$ is true for all numbers 0 (or 1) $<=\mathrm{i}<=\mathrm{k}$
- Inductive step: Given the inductive hypothesis, prove that $P(k+1)$ is true.

Proof by contradiction

A predicate P is stated.
To prove by contradiction that P is true, we do as follows:

- Base assumption: Assume that P is false
- Proof: Start with the base assumption and show that some known property/fact is false
- Conclude: That since the only thing that could be false in the proof is the base assumption, the base assumption must be false (meaning that P is true).

Example: prove that there is an infinite number of primes.
The proof is based on the fact that every number is either a prime or a product of primes.
Base assumption: the assertion is false: there is a largest prime p_{k}.
Let $p_{1}, p_{2}, \ldots, p_{k}$ be all the primes and consider the following number:
$N=p_{1} \times p_{2} \times \ldots \times p_{k}+1$
N is larger than p_{k}, so N is not prime. So, N must be a product of some of the primes p_{1}, p_{2}, \ldots, p_{k}. But, none of these primes divides N, so N is not a product of any of the primes.

We've reached a contradiction, leading to the conclusion that the assertion must be true.

Proof why induction works (by contradiction)

Theorem: If we prove by induction that P is true, then P must be true for all numbers.
Proof (by contradiction):
Suppose we proved by induction that P is true for all numbers 1 .. n.
Suppose now that P is actually false for some numbers. Therefore, there exists a smallest $k \leq n$ for which $P(k)$ is false.

In the induction's base case, we showed that $P(1)$ is correct.
Therefore it must be that $k>1$.
Since k is the smallest value for which $P(k)$ is false, it must be that $P(k-1)$ is true.
But, in the induction step, we showed that if $P(k-1)$ is true,
it must be that $P(k)$ is also true.
Contradiction: $P(k)$ cannot be false for any $1 \leq k \leq n$
Therefore the theorem is correct and the proof by induction method works.
\forall predicates $P,(P(0) \wedge \forall k[P(k) \Rightarrow P(k+1)]) \Rightarrow \forall n P(n)$

Outline

Introduction

- Computational problems
- Algorithms

Search algorithms

- Sequential search
- Binary search
- Comparison

Running-time analysis

- Performance monitoring
- Order of ...

Sort algorithms

- Selection sort
- Insertion sort
- Merging
- Merge sort

Typical run-time functions

Proof techniques

- Induction
- Contradiction

Square root by binary search

- Algorithm
- Correctness proof

GCD algorithm

- Algorithm
- Correctness proof

Binary search

- Correctness proof

Square root by binary search

Input: a positive real number x, and a precision requirement ε
Output: a real number r such that $|r-\sqrt{ } x| \leq \varepsilon$
// Computes sqrt(x) with an epsilon precision
sqrt(x, epsilon):
low $=0$
high = x
while (high - low > epsilon)
mid $=$ (high + low) / 2
if (mid * mid > x)
high $=m i d$
else
low $=$ mid
return low
Mean Value Theorem:
if $f($ low $)<0$ and $f($ high $)>0$ then there is x, low $<x<$ high with $f(x)=0$.

Sample run

```
sqrt(x, epsilon) {
    low = 0
    high = x
    while (high - low > epsilon) {
        mid = (high + low) / 2
        if (mid * mid > x)
            high = mid
        else
            low = mid
    }
    return low
}
\begin{tabular}{llllll|}
\hline & \(\underline{m i d}\) & & mid*mid & low & high \\
After 0 rounds & -- & -- & 0 & 2 \\
After 1 round & 1 & 1 & 1 & 2 \\
After 2 rounds & 1.5 & 2.25 & 1 & 1.5 \\
After 3 rounds & 1.25 & \(1.56 \ldots\) & 1.25 & 1.5 \\
After 4 rounds & \(1.37 \ldots\) & \(1.89 \ldots\) & \(1.37 \ldots\) & 1.5 \\
After 5 rounds & \(1.43 \ldots\) & \(2.06 \ldots\) & \(1.37 \ldots\) & \(1.43 \ldots\) \\
After 6 rounds & \(1.40 \ldots\) & \(1.97 \ldots\) & \(1.40 \ldots\) & \(1.43 \ldots\) \\
Output: \(1.40 \ldots\) & & & &
\end{tabular}
```


Algorithm correctness

Loop invariant lemma:
At each step of the algorithm low $\leq \sqrt{ } x \leq$ high.
Proof (by induction on the iteration number):
Base case: in iteration 0 we have

$$
\text { low }=0 \leq \sqrt{x} \leq \text { high }=x
$$

Induction step: in iterations > 0:
If mid $>\sqrt{ } x$ the code sets high $=$ mid and thus high $>\sqrt{ } x$

If mid $\leq \sqrt{ } x$ the code sets low $=$ mid and thus low $\leq \sqrt{ } x$

Theorem: When the algorithm terminates it returns
a value r that satisfies $|r-\sqrt{ }| \leq \varepsilon$.
Proof: The algorithm terminates when
high - low $\leq \varepsilon$, and returns low.
At this point, by the lemma:
low $\leq \sqrt{ } x \leq$ high \leq low $+\varepsilon$.
Thus low $\leq \sqrt{ } x \leq$ low $+\varepsilon$
Thus \mid low $-\sqrt{ } \mid \leq \varepsilon$.

```
sqrt(x, epsilon) {
    low = 0
    high = x
    while (high - low > epsilon) {
        mid = (high + low) / 2
        if (mid * mid > x)
            high = mid
        else
            low = mid
    }
    return low
}
```


Open questions:

- Does the algorithm always terminate?
- How Fast?

Running-time

In each iteration, the value of (high-low) decreases by a factor of 2 .
At the beginning, (high-low) $=x$; at the end, (high-low) goes below ε
How many times can you divide x by 2 before it goes below ε ?
Answer: $\log _{2}(x / \varepsilon)=\log _{2} x+\log _{2} \varepsilon^{-1}$
Thus the run-time is order of $\log _{2} x+\log _{2} \varepsilon^{-1}$

```
sqrt(x, epsilon) {
    low = 0;
    high = x;
    while (high-low > epsilon) {
        mid = (high+low)/2;
        if (mid*mid > x)
            high = mid;
        else
            low = mid;
    }
    return low;
}
```


Outline

Introduction

- Computational problems
- Algorithms

Search algorithms

- Sequential search
- Binary search
- Comparison

Running-time analysis

- Performance monitoring
- Order of ...

Sort algorithms

- Selection sort
- Insertion sort
- Merging
- Merge sort

Typical run-time functions

Proof techniques

- Induction
- Contradiction

Square root by binary search

- Algorithm
- Correctness proof

GCD algorithm

- Algorithm
- Correctness proof

Binary search

- Correctness proof

Greatest Common Divisor (GCD)

- Published by Euclid 2,200 years ago
- Definition: The GCD of two natural numbers x, y is the largest integer j that divides both numbers (without remainder).
- Notation: we say that j is the largest number such that $j \mid x$, and $j \mid y$.
- The GCD Problem: Input: Two natural numbers x, y; Output: $G C D(x, y)$

Euclid's GCD Algorithm

```
gcd(x,y) {
    while (y != 0) {
        rem = x % y
        x = y
        y = rem
    }
    return x
}
```


Euclid
(born 300 BC)

Sample run of Euclid's algorithm

Euclid's GCD Algorithm

```
gcd(x,y) {
    while (y != 0) {
        rem = x % y
        x = y
        y = rem
    }
    return x
}
```

Example: $\operatorname{GCD}(72,120)$

After 0 rounds	--	72	120

After 1 rounds $72 \quad 120$
After 2 rounds $48 \quad 7248$
After 3 rounds 2424
After 4 rounds

024
0

Observations:

- 24 is not only the GCD of 72 and 120, it is also the GCD of x and y in every iteration
- Y becomes smaller in every iteration.

Correctness of Euclid's algorithm

Theorem:
When Euclid's $G C D(x, y)$ algorithm terminates, it returns the GCD of x and y

Notation: Let $g=G C D(x, y)$ for the original values of x and y

Loop Invariant Lemma:
For all steps $k \geq 0, \operatorname{GCD}(x, y)=9$
for the current values of x and y.
(proof in next slide).
Euclid's GCD Algorithm

```
gcd(x,y) {
    while (y != 0) {
        rem = x % y
        x = y
        y = rem
    }
    return x
}
```

Proof of the theorem:
The method returns x when $y=0$.
By the loop invariant lemma, at this point $G C D(x, y)=g$.
But $G C D(x, 0)=x$ for every x (since $x \mid 0$ and $x \mid x$).
Thus $g=x$, which is the value returned by the method.
Still Missing: The algorithm always terminates.

Correctness of Euclid's algorithm (proof of the loop invariant lemma)

Support Lemma: For all integers $x, y: G C D(x, y)=\operatorname{GCD}(x \% y, y)$
Proof: Let $x=a y+b$, where $y>b \geq 0$. Thus $x \% y=b$.
(1) If $g \mid x$, and $g \mid y$, we also have $g \mid(x-a y)$, i.e. $g \mid b$.

Thus $G C D(b, y) \geq g=G C D(x, y)$.
(2) Let $g^{\prime}=G C D(b, y)$, then $g^{\prime} \mid(x-a y)$ and $g^{\prime} \mid y$, so we also have $g^{\prime} \mid x$.

Thus $G C D(x, y) \geq g^{\prime}=G C D(b, y)$.
(3) It follows that $G C D(x, y) \geq G C D(b, y) \geq G C D(x, y)$.

Therefore $\operatorname{GCD}(x, y)=\operatorname{GCD}(b, y)=\operatorname{GCD}(x \% y, y)$
Loop Invariant Lemma:
For all steps $k \geq 0, \operatorname{GCD}(x, y)=g$ for the current values of x and y.
Proof: By induction on k.
Base step: For $k=0, x$ and y are the original values so clearly $\operatorname{GCD}(x, y)=g$.
Induction step:

- Let x, y denote the values after k steps. We assume that $\operatorname{GCD}(x, y)=g$.
- Let x^{\prime}, y^{\prime} denote the values after $k+1$ steps. We need to show that $\operatorname{GCD}\left(x^{\prime}, y^{\prime}\right)=\operatorname{GCD}(x, y)$. According to the code: $x^{\prime}=y$ and $y^{\prime}=x \% y$. Thus the proof follows from the support lemma.

Outline

Introduction

- Computational problems
- Algorithms

Search algorithms

- Sequential search
- Binary search
- Comparison

Running-time analysis

- Performance monitoring
- Order of ...

Sort algorithms

- Selection sort
- Insertion sort
- Merging
- Merge sort

Typical run-time functions

Proof techniques

- Induction
- Contradiction

Square root by binary seacrh

- Algorithm
- Correctness proof

GCD algorithm

- Algorithm
- Correctness proof

Binary search

- Correctness proof

Theorem:

if a value exists in a sorted array, the binary search algorithm will find it.

Proof: by induction on $k=$ the array's length
Base step: if $k=0$ then low $=0$ and high $=0-1=-1$.
Therefore low > high and the algorithm will report failure correctly.

Inductive hypothesis: Assume that we can correctly find the value in sorted arrays of size $0 \leq i \leq k-1$. We will prove that we can also find the value correctly in sorted arrays of size k.

Inductive step: According to the algorithm, we look at $A\left[\frac{1}{2} k\right]$. There are three cases:

1. If $A\left[\frac{1}{2} k\right]=$ searched value, then the algorithm found it.
2. If $A\left[\frac{1}{2} k\right]>$ searched value, then since the array is sorted, the searched value must exist somewhere in the range $\mathrm{A}\left[0 . . \frac{1}{2} \mathrm{k}\right]$. The length of this sorted array is less than k. Therefore, according to the inductive hypothesis, the algorithm will find it.
3. If $A\left[\frac{1}{2} k\right]$ < searched value, then since the array is sorted, the searched value must exist somewhere in the range $\mathrm{A}\left[\left(\frac{1}{2} \mathrm{k}\right)+1 . . n\right]$. The same argument follows.
```
// Find x in a sorted array
// by binary search
low = 0
high = N-1;
while (low <= high) {
    med = (low + high) / 2
    if (x = A[med])
        return med
    if (x < A[med])
        high = med - 1
    else
        low = med + 1
}
return -1
```

