
Introduction to Computer Science, Shimon Schocken slide 1

Algorithms

Introduction to Computer Science
Shimon Schocken
IDC Herzliya

Lecture 8-3

Abu Abdullah
Muhammad ibn Musa

al-Khwarizmi

Introduction to Computer Science, Shimon Schocken slide 2

Outline

Introduction

� Computational problems

� Algorithms

Search algorithms

� Sequential search

� Binary search

� Comparison

Running-time analysis

� Performance monitoring

� Order of ...

Sort algorithms

� Selection sort

� Insertion sort

� Merging

� Merge sort

Typical run-time functions

Proof techniques

� Induction

� Contradiction

Square root by binary search

� Algorithm

� Correctness proof

GCD algorithm

� Algorithm

� Correctness proof

Binary search

� Correctness proof

Introduction to Computer Science, Shimon Schocken slide 3

Proof by Induction

A predicate P is stated.

To prove by induction that P is true for every natural number n, we do as follows:

� Base step: We prove that P is true for 0 (or for 1)

� Inductive hypothesis: We assume that P is true for k

� Induction step: We prove that if P is true for k, it follows that P is true for k+1.

Example: prove that 1 + 2 + 3 + … + n = ½ n (n + 1)

Strong induction:

� Base case: Prove that P is true for 0 (or 1)

� Inductive hypothesis: Assume that P(i) is true for all numbers 0 (or 1) <= i <= k

� Inductive step: Given the inductive hypothesis, prove that P(k+1) is true.

Introduction to Computer Science, Shimon Schocken slide 4

Proof by contradiction

A predicate P is stated.

To prove by contradiction that P is true, we do as follows:

� Base assumption: Assume that P is false

� Proof: Start with the base assumption and show that some known property/fact is
false

� Conclude: That since the only thing that could be false in the proof is the base
assumption, the base assumption must be false (meaning that P is true).

Example: prove that there is an infinite number of primes.

The proof is based on the fact that every number is either a prime or a product of primes.

Base assumption: the assertion is false: there is a largest prime pk.

Let p1, p2, … , pk be all the primes and consider the following number:

N = p1 × p2 × … × pk +1

N is larger than pk, so N is not prime. So, N must be a product of some of the primes p1,
p2, … , pk. But, none of these primes divides N, so N is not a product of any of the
primes.

We’ve reached a contradiction, leading to the conclusion that the assertion must be true.

Introduction to Computer Science, Shimon Schocken slide 5

Proof why induction works (by contradiction)

Theorem: If we prove by induction that P is true, then P must be true for all numbers.

Proof (by contradiction):

Suppose we proved by induction that P is true for all numbers 1 .. n.

Suppose now that P is actually false for some numbers. Therefore, there exists a
smallest k ≤ n for which P(k) is false.

In the induction’s base case, we showed that P(1) is correct.
Therefore it must be that k > 1.

Since k is the smallest value for which P(k) is false, it must be that P(k-1) is true.

But, in the induction step, we showed that if P(k-1) is true,
it must be that P(k) is also true.

Contradiction: P(k) cannot be false for any 1 ≤ k ≤ n

Therefore the theorem is correct and the proof by induction method works.

Introduction to Computer Science, Shimon Schocken slide 6

Outline

Introduction

� Computational problems

� Algorithms

Search algorithms

� Sequential search

� Binary search

� Comparison

Running-time analysis

� Performance monitoring

� Order of ...

Sort algorithms

� Selection sort

� Insertion sort

� Merging

� Merge sort

Typical run-time functions

Proof techniques

� Induction

� Contradiction

Square root by binary search

� Algorithm

� Correctness proof

GCD algorithm

� Algorithm

� Correctness proof

Binary search

� Correctness proof

Introduction to Computer Science, Shimon Schocken slide 7

Square root by binary search

Input: a positive real number x, and a precision requirement ε

Output: a real number r such that |r-√x| ≤ ε

// Computes sqrt(x) with an epsilon precision

sqrt(x, epsilon):

low = 0

high = x

while (high - low > epsilon)

mid = (high + low) / 2

if (mid * mid > x)

high = mid

else

low = mid

return low

// Computes sqrt(x) with an epsilon precision

sqrt(x, epsilon):

low = 0

high = x

while (high - low > epsilon)

mid = (high + low) / 2

if (mid * mid > x)

high = mid

else

low = mid

return low

To find √2,

we solve f(x) = x2 – 2 = 0

Mean Value Theorem:

if f(low) < 0 and f(high) > 0
then there is x, low<x<high
with f(x)=0.

Introduction to Computer Science, Shimon Schocken slide 8

sqrt(x, epsilon) {

low = 0

high = x

while (high - low > epsilon) {

mid = (high + low) / 2

if (mid * mid > x)

high = mid

else

low = mid

}

return low

}

sqrt(x, epsilon) {

low = 0

high = x

while (high - low > epsilon) {

mid = (high + low) / 2

if (mid * mid > x)

high = mid

else

low = mid

}

return low

}

Sample run

mid mid*mid low high

After 0 rounds -- -- 0 2

After 1 round 1 1 1 2

After 2 rounds 1.5 2.25 1 1.5

After 3 rounds 1.25 1.56.. 1.25 1.5

After 4 rounds 1.37.. 1.89.. 1.37.. 1.5

After 5 rounds 1.43.. 2.06.. 1.37.. 1.43..

After 6 rounds 1.40.. 1.97.. 1.40.. 1.43..

Output: 1.40..

Sample run: Computes sqrt(2) with precision 0.05

General observation:

Binary search can be used to
approximate the value of any function
f(x) as long as f is continuous and
monotonous and you know how to compute
its inverse.

Introduction to Computer Science, Shimon Schocken slide 9

Algorithm correctness

Loop invariant lemma:
At each step of the algorithm low ≤ √x ≤ high.

Proof (by induction on the iteration number):

Base case: in iteration 0 we have
low = 0 ≤ √x ≤ high = x

Induction step: in iterations > 0:

If mid > √x the code sets high = mid
and thus high > √x

If mid ≤ √x the code sets low = mid
and thus low ≤ √x

Theorem: When the algorithm terminates it returns
a value r that satisfies |r - √x| ≤ ε.

Proof: The algorithm terminates when
high - low ≤ ε, and returns low.

At this point, by the lemma:
low ≤ √x ≤ high ≤ low + ε.

Thus low ≤ √x ≤ low + ε

Thus |low - √x| ≤ ε.

Open questions:

� Does the algorithm
always terminate?

� How Fast?

sqrt(x, epsilon) {

low = 0

high = x

while (high - low > epsilon) {

mid = (high + low) / 2

if (mid * mid > x)

high = mid

else

low = mid

}

return low

}

sqrt(x, epsilon) {

low = 0

high = x

while (high - low > epsilon) {

mid = (high + low) / 2

if (mid * mid > x)

high = mid

else

low = mid

}

return low

}

Introduction to Computer Science, Shimon Schocken slide 10

Running-time

In each iteration, the value of (high-low) decreases by a factor of 2.

At the beginning, (high-low) = x; at the end, (high-low) goes below ε

How many times can you divide x by 2 before it goes below ε ?

Answer: log2(x /ε) = log2x + log2ε -1

Thus the run-time is order of log2x + log2ε -1 sqrt(x, epsilon) {

low = 0;

high = x;

while (high-low > epsilon) {

mid = (high+low)/2;

if (mid*mid > x)

high = mid;

else

low = mid;

}

return low;

}

sqrt(x, epsilon) {

low = 0;

high = x;

while (high-low > epsilon) {

mid = (high+low)/2;

if (mid*mid > x)

high = mid;

else

low = mid;

}

return low;

}

Introduction to Computer Science, Shimon Schocken slide 11

Outline

Introduction

� Computational problems

� Algorithms

Search algorithms

� Sequential search

� Binary search

� Comparison

Running-time analysis

� Performance monitoring

� Order of ...

Sort algorithms

� Selection sort

� Insertion sort

� Merging

� Merge sort

Typical run-time functions

Proof techniques

� Induction

� Contradiction

Square root by binary search

� Algorithm

� Correctness proof

GCD algorithm

� Algorithm

� Correctness proof

Binary search

� Correctness proof

Introduction to Computer Science, Shimon Schocken slide 12

Greatest Common Divisor (GCD)

� Published by Euclid 2,200 years ago

� Definition: The GCD of two natural numbers x, y is the largest integer j that divides
both numbers (without remainder).

� Notation: we say that j is the largest number such that j|x, and j|y.

� The GCD Problem: Input: Two natural numbers x, y ; Output: GCD(x,y)

Euclid’s GCD Algorithm

gcd(x,y) {

while (y != 0) {

rem = x % y

x = y

y = rem

}

return x

}

gcd(x,y) {

while (y != 0) {

rem = x % y

x = y

y = rem

}

return x

}

Euclid
(born 300 BC)

Introduction to Computer Science, Shimon Schocken slide 13

Sample run of Euclid’s algorithm

gcd(x,y) {

while (y != 0) {

rem = x % y

x = y

y = rem

}

return x

}

gcd(x,y) {

while (y != 0) {

rem = x % y

x = y

y = rem

}

return x

}

Euclid’s GCD Algorithm

Example: GCD(72,120)

rem x y

After 0 rounds -- 72 120

After 1 rounds 72 120 72

After 2 rounds 48 72 48

After 3 rounds 24 48 24

After 4 rounds 0 24 0

Output: 24

Observations:

� 24 is not only the GCD of 72 and 120, it is also the GCD of x and y in every iteration

� Y becomes smaller in every iteration.

Introduction to Computer Science, Shimon Schocken slide 14

Correctness of Euclid’s algorithm

Theorem:
When Euclid’s GCD(x,y) algorithm
terminates, it returns the GCD of x and y

Notation: Let g = GCD(x,y) for the original
values of x and y

Loop Invariant Lemma:
For all steps k ≥≥≥≥ 0, GCD(x,y) = g
for the current values of x and y.
(proof in next slide).

Proof of the theorem:
The method returns x when y=0.
By the loop invariant lemma, at this point GCD(x,y) = g.
But GCD(x,0) = x for every x (since x|0 and x|x).
Thus g = x, which is the value returned by the method.

Still Missing: The algorithm always terminates.

Euclid’s GCD Algorithm

gcd(x,y) {

while (y != 0) {

rem = x % y

x = y

y = rem

}

return x

}

gcd(x,y) {

while (y != 0) {

rem = x % y

x = y

y = rem

}

return x

}

Introduction to Computer Science, Shimon Schocken slide 15

Correctness of Euclid’s algorithm (proof of the loop invariant lemma)

Support Lemma: For all integers x, y : GCD(x,y) = GCD(x%y , y)

Proof: Let x = ay + b, where y > b ≥≥≥≥ 0. Thus x%y = b.

(1) If g|x, and g|y, we also have g|(x-ay), i.e. g|b.
Thus GCD(b,y) ≥≥≥≥ g = GCD(x,y).

(2) Let g’ = GCD(b,y), then g’|(x-ay) and g’|y, so we also have g’|x.
Thus GCD(x,y) ≥≥≥≥ g’ = GCD(b,y).

(3) It follows that GCD(x,y) ≥≥≥≥ GCD(b,y) ≥≥≥≥ GCD(x,y).

Therefore GCD(x,y) = GCD(b,y) = GCD(x%y , y)

Loop Invariant Lemma:
For all steps k ≥≥≥≥ 0, GCD(x,y) = g for the current values of x and y.

Proof: By induction on k.

Base step: For k = 0, x and y are the original values so clearly GCD(x,y) = g.

Induction step:

� Let x, y denote the values after k steps. We assume that GCD(x,y) = g.

� Let x’, y’ denote the values after k+1 steps.

� We need to show that GCD(x’,y’) = GCD(x,y).

� According to the code: x’ = y and y’ = x % y.
Thus the proof follows from the support lemma.

Introduction to Computer Science, Shimon Schocken slide 16

Outline

Introduction

� Computational problems

� Algorithms

Search algorithms

� Sequential search

� Binary search

� Comparison

Running-time analysis

� Performance monitoring

� Order of ...

Sort algorithms

� Selection sort

� Insertion sort

� Merging

� Merge sort

Typical run-time functions

Proof techniques

� Induction

� Contradiction

Square root by binary seacrh

� Algorithm

� Correctness proof

GCD algorithm

� Algorithm

� Correctness proof

Binary search

� Correctness proof

Introduction to Computer Science, Shimon Schocken slide 17

Proof by induction that the binary search algorithm finds the correct value

Proof: by induction on k = the array’s length

Base step: if k = 0 then low = 0 and high = 0 – 1 = -1.
Therefore low > high and the algorithm will report
failure correctly.

Inductive hypothesis: Assume that we can correctly find
the value in sorted arrays of size 0 ≤ i ≤ k-1. We will
prove that we can also find the value correctly in
sorted arrays of size k.

Inductive step: According to the algorithm, we look at
A[½ k]. There are three cases:

1. If A[½ k] = searched value, then the algorithm found it.

2. If A[½ k] > searched value, then since the array is sorted,
the searched value must exist somewhere in the range
A[0 .. ½ k]. The length of this sorted array is less than
k. Therefore, according to the inductive hypothesis,
the algorithm will find it.

3. If A[½ k] < searched value, then since the array is sorted,
the searched value must exist somewhere in the range
A[(½ k)+1 .. n]. The same argument follows.

Theorem:

if a value exists in a sorted array, the binary search algorithm will find it.

// Find x in a sorted array// Find x in a sorted array// Find x in a sorted array// Find x in a sorted array

// by binary search// by binary search// by binary search// by binary search

low = 0

high = N-1;

while (low <= high) {

med = (low + high) / 2

if (x = A[med])

return med

if (x < A[med])

high = med - 1

else

low = med + 1

}

return -1

// Find x in a sorted array// Find x in a sorted array// Find x in a sorted array// Find x in a sorted array

// by binary search// by binary search// by binary search// by binary search

low = 0

high = N-1;

while (low <= high) {

med = (low + high) / 2

if (x = A[med])

return med

if (x < A[med])

high = med - 1

else

low = med + 1

}

return -1

