Introduction to Computer Science Shimon Schocken IDC Herzliya

Lecture 8-1

Algorithms

Computational problems

<u>A computational problem</u> describes an input-output relationship. Examples:

Prime number problem:

Input: an integer number Output: 1 if the number is prime, 0 otherwise

□ Sorting problem:

Input: A list of numbers Output: Same list, sorted

□ File compression problem:

Input: A file Output: A compressed file

□ Image indexing problem:

Input: A digital image

Output: An English description of the picture

□ Travelling salesman problem (TSP):

Input: A list of cities and distances among them

Output: The minimal distance route that visits every city exactly once.

🗆 Etc.

Introduction

• Computational problems

• Algorithms

Search algorithms

- Motivation
- Sequential search
- Binary search
- Comparison

Running-time analysis

- Performance monitoring
- Big O analysis

Algorithms

<u>Algorithm</u>: A specification how to solve a computational problem.

- We wish algorithms to be:
 - Correct: produce the correct output for each possible input
 - Efficient: use as little resources as possible (time, space)
- There are usually many different algorithms for each computational problem
- The algorithm's description must be such that one can write a program from it.

Example:

```
// Testing whether a number x is prime:
for j = 2 .. x-1
    if j|N
        return "x is composite"
return "x is prime"
```

Example: Search engines

Search engine -- behind the scene

The search engine (SE) index:

- A list of words; each word is associated with a list of URL's that mention it
- The lists are maintained by hard-working robots

Typical search scenario:

- User enters a keyword
- The SE searches the index
- The SE returns a list of URLs that mention this word; the list is sorted by PageRank

The search engine must be

- Reliable
- Efficient

Opening the black box:

- Searching algorithms
- Sorting algorithms.

keyword	URLs
mohican	11, 4, 5
more	2, 11
morgan	13, 100, 1 ,7
mormon	4, 83
morning	12, 4
morocco	1, 7, 4, 5
mortal	17
mortgage	81, 9
mountain	10, 3, 5, 4
nader	9
nalini	5, 11, 12, 95
name	17, 2, 8
namibia	5, 17
nancy	3, 51, 7, 9, 1
never	19
nike	55, 21
ninex	17, 3, 308
nitro	91, 7

Sequential search

What is the running-time of sequential search?

- On which input?
- We normally carry out worst-case analysis
- Worst-case running time is N steps.

keyword	URLs
mohican	11, 4, 5
more	2, 11
morgan	13, 100, 1 ,7
mormon	4, 83
morning	12, 4
morocco	1, 7, 4, 5
mortal	17
mortgage	81, 9
mountain	10, 3, 5, 4
nader	9
nalini	5, 11, 12, 95
name	17, 2, 8
namibia	5, 17
nancy	3, 51, 7, 9, 1
never	19
nike	55, 21
ninex	17, 3, 308
nitro	91, 7

Binary search

GooglemoroccoSearchAdvanced searchInput: a value x and a sorted list of N valuesOutput: if x is found, its location; else -1Strategy: Divide and conquer

What is the running time of binary search?

- It's the number of times you can divide n by 2
- Worst-case running time is log₂N steps.

mohican more	11, 4, 5
more	
	2, 11
morgan	13, 100, 1 ,7
mormon	4, 83
morning	12, 4
morocco	1, 7, 4, 5
mortal	17
mortgage	81, 9
mountain	10, 3, 5, 4
nader	9
nalini	5, 11, 12, 95
name	17, 2, 8
namibia	5, 17
nancy	3, 51, 7, 9, 1
never	19
nike	55, 21
ninex	17, 3, 308
nitro	91, 7
namibia nancy	5, 17 3, 51, 7, 9, 1

Sequential search revisited

If the array is of size N, how many steps will it take to find an item?

- In the best case?
- In the worst case?
 N
- On average? (*) $(1+2+3+...+N) / N = \frac{1}{2}(N+1)$

(Asuming a uniform distribution)

Binary search revisited

Binary search: efficiency

How many iterations in this loop?

- In each iteration we halve the value of (*high low*)
- At the beginning: (high low) = N 0 = N
- How many times can you halve N? $\log_2 N$

Thus, the number of steps to find any value is $log_2 N$.

Why logarithmic running time is sweet

			Seq.	Binary
Input size:	Ν	Run-time:	Ν	log ₂ N
	8		8	3
	16		16	4
	32		32	5
	64		64	6
	100		100	7
1	,000		1,000	10
1,000	,000	1,00	0,000	20
1,000,000	,000	1,000,00	0,000	30

Why is log₂N attractive?

- Because $\log_2(2N) = \log_2 N + 1$
- A search engine has to search 1 billion records; it takes 30 steps; Sometimes soon it will have to search 2 billion records; this will take 31 steps
- When the size of the Internet doubles, each search requires one more step.

Not bad!

Introduction

- Computational problems
- Algorithms

Search algorithms

- Motivation
- Sequential search
- Binary search
- Comparison

Running-time analysis

- Performance monitoring
- Big O analysis

Empirical testing of Java's performance on your computer

```
import java.util.*;
public class PerformanceEvaluation {
                                                      Loo
  public static void main(String[] args) {
    int i = 0:
                                                      Dou
    double d = 1.618:
                                                      Me
    SimpleObject obj;
    final int numIterations = 1000000000;
                                                      Ob
    long startTime = System.currentTimeMillis();
    for (i = 0; i < numIterations; i++)
      // Put here the operation you wish to time
      // d = 1.0 / d:
      // obj.m();
      // obj = new SimpleObject();
    }
    long duration = System.currentTimeMillis() - startTime;
    System.out.println("Duration in ms: " + duration);
  }
}
public class SimpleObject {
  private int x = 0;
  public void m() { x++; }
}
```

	Timed operation	Run-tim on Shimo	1 -time (in ms) Shimon's old PC	
p overhead:			1,047	
ıble division:	d=1.0/d;		16,140	
thod call:	obj.m();		2,406	
ject creation:	obj = new SimpleObject();		10,937	

These performance figures vary greatly on different machines

Thus, although empirical testing is useful, it is quite useless from a theoretical point of view.

- We can count the number of operations that the algorithm performs:
 - □ Arithmetic: (low + high)/2
 - Comparison: if (x = a[med]) ...
 - □ Assignment: low = med + 1
 - □ Branching: while (low <= high)
 - Etc.

med = (low + high) / 2
if (x = a[med])
 return med
if (x < a[med])
 high = med - 1
else
 low = med + 1</pre>

while (low <= high)</pre>

- But these operations ...
 - Are not atomic
 - Are not low-level
 - Don't run in the same time
 - Run in different times on different hardware / software platforms.
- Thus counting operations is also quite useless from a theoretical point of view.

Running time analysis

The actual running time of a any given algorithm depends upon:

- The input
- The implementation language
- □ The compiler
- The OS
- The hardware
- Other programs running on the computer
- And more.

Let's make all → these factors irrelevant

Formal run-time analysis:

Neutralize all the platform-specific details; Focus instead on one thing only:

Running-time of the algorithm as a function of the input size: t(N).

Running time analysis

We seek a function t(N) which will be invariant over hardware and software.

Example: print a multiplication table of size N by N

```
print "enter the table's size:"
read N
for i = 0 .. N-1
    for j = 0 .. N-1
        print i * j;
    println
```

- Let's assume that each operation takes 1 time unit
- □ Set up (print/read): 2 time units
- □ Inner loop: N * 1 + 1 time units
- Outer loop: N iterations
- Total run time: 2 + N * (N + 1)

```
□ †(N) = N<sup>2</sup> + N + 2
```

Running time analysis:

- The running time t(N) is often a polynomial function in N, the input's size
- Instead of looking at t(N), we ignore all the constants and all the terms except for the highest degree of N
- Example: if $t(N) = N^2 + N + 2$ we say that the running time is "order of $N^{2"}$
- Indeed, for realistically large N's, the high order term dominates the running-time
- Running time analysis: a nice example of how to focus on the big picture.