
Introduction to Computer Science, Shimon Schocken slide 1

Algorithms

Introduction to Computer Science
Shimon Schocken
IDC Herzliya

Lecture 8-1

Introduction to Computer Science, Shimon Schocken slide 2

Computational problems

A computational problem describes an input-output relationship. Examples:

� Prime number problem:

Input: an integer number

Output: 1 if the number is prime, 0 otherwise

� Sorting problem:

Input: A list of numbers

Output: Same list, sorted

� File compression problem:

Input: A file

Output: A compressed file

� Image indexing problem:

Input: A digital image

Output: An English description of the picture

� Travelling salesman problem (TSP):

Input: A list of cities and distances among them

Output: The minimal distance route that visits every city exactly once.

� Etc.

Introduction to Computer Science, Shimon Schocken slide 3

Outline

Introduction

� Computational problems

� Algorithms

Search algorithms

� Motivation

� Sequential search

� Binary search

� Comparison

Running-time analysis

� Performance monitoring

� Big O analysis

Introduction to Computer Science, Shimon Schocken slide 4

Algorithms

Algorithm: A specification how to solve a computational problem.

� We wish algorithms to be:

� Correct: produce the correct output for each possible input

� Efficient: use as little resources as possible (time, space)

� There are usually many different algorithms for each computational problem

� The algorithm’s description must be such that one can write a program from it.

// Testing whether a number x is prime:
for j = 2 .. x-1
if j|N
return “x is composite”

return “x is prime”

// Testing whether a number x is prime:
for j = 2 .. x-1
if j|N
return “x is composite”

return “x is prime”

Example:

Introduction to Computer Science, Shimon Schocken slide 5

Example: Search engines

Introduction to Computer Science, Shimon Schocken slide 6

Search engine -- behind the scene

The search engine (SE) index:

� A list of words; each word is associated with a
list of URL’s that mention it

� The lists are maintained by hard-working robots

Typical search scenario:

� User enters a keyword

� The SE searches the index

� The SE returns a list of URLs that mention this
word; the list is sorted by PageRank

The search engine must be

� Reliable

� Efficient

Opening the black box:

� Searching algorithms

� Sorting algorithms.

mohican

more

morgan

mormon

morning

morocco

mortal

mortgage

mountain

nader

nalini

name

namibia

nancy

never

nike

ninex

nitro

11, 4, 5

2, 11

13, 100, 1 ,7

4, 83

12, 4

1, 7, 4, 5

17

81, 9

10, 3, 5, 4

9

5, 11, 12, 95

17, 2, 8

5, 17

3, 51, 7, 9, 1

19

55, 21

17, 3, 308

91, 7

URLskeyword

Introduction to Computer Science, Shimon Schocken slide 7

Sequential search

Input: a value x and a list of N values

Output: if x is found, its location; else -1

Strategy: march through the list

What is the running-time of sequential search?

� On which input?

� We normally carry out worst-case analysis

� Worst-case running time is N steps.

mohican

more

morgan

mormon

morning

morocco

mortal

mortgage

mountain

nader

nalini

name

namibia

nancy

never

nike

ninex

nitro

11, 4, 5

2, 11

13, 100, 1 ,7

4, 83

12, 4

1, 7, 4, 5

17

81, 9

10, 3, 5, 4

9

5, 11, 12, 95

17, 2, 8

5, 17

3, 51, 7, 9, 1

19

55, 21

17, 3, 308

91, 7

URLskeyword

Introduction to Computer Science, Shimon Schocken slide 8

Binary search

Input: a value x and a sorted list of N values

Output: if x is found, its location; else -1

Strategy: Divide and conquer

What is the running time of binary search?

� It’s the number of times you can divide n by 2

� Worst-case running time is log2N steps.

mohican

more

morgan

mormon

morning

morocco

mortal

mortgage

mountain

nader

nalini

name

namibia

nancy

never

nike

ninex

nitro

11, 4, 5

2, 11

13, 100, 1 ,7

4, 83

12, 4

1, 7, 4, 5

17

81, 9

10, 3, 5, 4

9

5, 11, 12, 95

17, 2, 8

5, 17

3, 51, 7, 9, 1

19

55, 21

17, 3, 308

91, 7

URLskeyword

Introduction to Computer Science, Shimon Schocken slide 9

Sequential search revisited

// Find the index of x in an array

for i = 0 .. N-1

if a[i] = x

return i

return -1

// Find the index of x in an array

for i = 0 .. N-1

if a[i] = x

return i

return -1

If the array is of size N, how many steps will it take to find an item?

� In the best case?

� In the worst case?

� On average? (*)

20Data: 7 51 97 2 9 72 83 91 15

0 1 1 3 4 5 6 7 8 9

1

N

(1 + 2 + 3 + … + N) / N = ½ (N + 1)

(Asuming a uniform distribution)

Introduction to Computer Science, Shimon Schocken slide 10

Binary search revisited

// Find the index of x in a sorted array

low = 0

high = N-1

while (low <= high)

med = (low + high) / 2

if (x = a[med])

return med

if (x < a[med])

high = med - 1

else

low = med + 1

return -1

// Find the index of x in a sorted array

low = 0

high = N-1

while (low <= high)

med = (low + high) / 2

if (x = a[med])

return med

if (x < a[med])

high = med - 1

else

low = med + 1

return -1

Sample run (x = 72):

Iteration low high med Test

0 0 9 4 72 > 20

1 5 9 7 72 < 83

2 5 6 5 72 > 51

3 6 6 6 72 = 72

2Data (sorted): 7 9 15 20 51 72 83 91 97

0 1 1 3 4 5 6 7 8 9

Introduction to Computer Science, Shimon Schocken slide 11

Binary search: efficiency

How many iterations in this loop?

� In each iteration we halve the value of (high – low)

� At the beginning: (high – low) = N – 0 = N

� How many times can you halve N? log2N

Thus, the number of steps to find any value is log2N.

while (low <= high)

med = (low + high) / 2

if (x = a[med])

return med

if (x < a[med])

high = med - 1

else

low = med + 1

while (low <= high)

med = (low + high) / 2

if (x = a[med])

return med

if (x < a[med])

high = med - 1

else

low = med + 1

Divide
and

Conquer!

Introduction to Computer Science, Shimon Schocken slide 12

Why logarithmic running time is sweet

301,000,000,0001,000,000,000

201,000,0001,000,000

101,0001,000

7100100

66464

53232

41616

388

log2NNN

Sequential
search:

t(N) = N
run-time

input size: N

Binary
search:

t(N) = log2N

Input size: Run-time:

Why is log2N attractive?

� Because log2(2N) = log2N + 1

� A search engine has to search 1 billion records;
it takes 30 steps;
Sometimes soon it will have to search 2 billion records;
this will take 31 steps

� When the size of the Internet doubles,
each search requires one more step.

Seq. Binary

Not bad!

Introduction to Computer Science, Shimon Schocken slide 13

Outline

Introduction

� Computational problems

� Algorithms

Search algorithms

� Motivation

� Sequential search

� Binary search

� Comparison

Running-time analysis

� Performance monitoring

� Big O analysis

Introduction to Computer Science, Shimon Schocken slide 14

Empirical testing of Java’s performance on your computer

import java.util.*;

public class PerformanceEvaluation {

public static void main(String[] args) {

int i = 0;

double d = 1.618;

SimpleObject obj;

final int numIterations = 1000000000;

long startTime = System.currentTimeMillis();

for (i = 0 ; i < numIterations ; i++){

// Put here the operation you wish to time

// d = 1.0 / d;

// obj.m();

// obj = new SimpleObject();

}

long duration = System.currentTimeMillis() - startTime;

System.out.println("Duration in ms: " + duration);

}

}

public class SimpleObject {

private int x = 0;

public void m() { x++; }

}

import java.util.*;

public class PerformanceEvaluation {

public static void main(String[] args) {

int i = 0;

double d = 1.618;

SimpleObject obj;

final int numIterations = 1000000000;

long startTime = System.currentTimeMillis();

for (i = 0 ; i < numIterations ; i++){

// Put here the operation you wish to time

// d = 1.0 / d;

// obj.m();

// obj = new SimpleObject();

}

long duration = System.currentTimeMillis() - startTime;

System.out.println("Duration in ms: " + duration);

}

}

public class SimpleObject {

private int x = 0;

public void m() { x++; }

}

Timed Run-time (in ms)
operation on Shimon’s old PC

Loop overhead: ………………………………………1,047

Double division: d=1.0/d; ……………… 16,140

Method call: obj.m(); ……………… 2,406

Object creation: obj = new ………………10,937
SimpleObject();

These performance
figures vary greatly on
different machines

Thus, although empirical
testing is useful, it is
quite useless from a
theoretical point of view.

Introduction to Computer Science, Shimon Schocken slide 15

Counting program operations

� We can count the number of operations that the algorithm performs:

� Arithmetic: (low + high)/2

� Comparison: if (x = a[med]) ...

� Assignment: low = med + 1

� Branching: while (low <= high)

� Etc.

� But these operations …

� Are not atomic

� Are not low-level

� Don’t run in the same time

� Run in different times on different hardware / software platforms.

� Thus counting operations is also quite useless from a theoretical point of view.

while (low <= high)

med = (low + high) / 2

if (x = a[med])

return med

if (x < a[med])

high = med - 1

else

low = med + 1

while (low <= high)

med = (low + high) / 2

if (x = a[med])

return med

if (x < a[med])

high = med - 1

else

low = med + 1

Introduction to Computer Science, Shimon Schocken slide 16

Running time analysis

The actual running time of a any given algorithm depends upon:

� The algorithm

� The input

� The implementation language

� The compiler

� The OS

� The hardware

� Other programs running on the computer

� And more.

Formal run-time analysis:

Neutralize all the platform-specific details; Focus instead on one thing only:

Running-time of the algorithm as a function of the input size: t(N).

Let’s make all
these factors
irrelevant

Introduction to Computer Science, Shimon Schocken slide 17

Running time analysis

Running time analysis:

� The running time t(N) is often a polynomial function in N, the input’s size

� Instead of looking at t(N), we ignore all the constants and all the terms except for
the highest degree of N

� Example: if t(N) = N2 + N + 2 we say that the running time is “order of N2”

� Indeed, for realistically large N’s, the high order term dominates the running-time

� Running time analysis: a nice example of how to focus on the big picture.

print “enter the table’s size:”

read N

for i = 0 .. N-1

for j = 0 .. N-1

print i * j;

println

print “enter the table’s size:”

read N

for i = 0 .. N-1

for j = 0 .. N-1

print i * j;

println

Example: print a multiplication table of size N by N
� Let’s assume that each operation

takes 1 time unit

� Set up (print/read): 2 time units

� Inner loop: N * 1 + 1 time units

� Outer loop: N iterations

� Total run time: 2 + N * (N + 1)

� t(N) = N2 + N + 2

We seek a function t(N) which will be invariant over hardware and software.

