Algorithms

Computational problems

A computational problem describes an input-output relationship. Examples:

- Prime number problem:

Input: an integer number
Output: 1 if the number is prime, 0 otherwise

- Sorting problem:

Input: A list of numbers
Output: Same list, sorted

- File compression problem:

Input: A file
Output: A compressed file

- Image indexing problem:

Input: A digital image
Output: An English description of the picture

- Travelling salesman problem (TSP):

Input: A list of cities and distances among them
Output: The minimal distance route that visits every city exactly once.

- Etc.

Outline

Introduction

- Computational problems
- Algorithms

Search algorithms

- Motivation
- Sequential search
- Binary search
- Comparison

Running-time analysis

- Performance monitoring
- Big O analysis

Algorithms

Algorithm: A specification how to solve a computational problem.

- We wish algorithms to be:
- Correct: produce the correct output for each possible input
- Efficient: use as little resources as possible (time, space)
- There are usually many different algorithms for each computational problem
- The algorithm's description must be such that one can write a program from it.

```
Example:
    // Testing whether a number x is prime:
for j = 2 .. x-1
    if j|N
        return "x is composite"
return "x is prime"
```


Example: Search engines

GOOgle
About 403,000 results (0.15 seconds) Advanced search
Mountain Biking, Walking Tours and Tailor Made Holidays in MoroccoGroup mountain biking and walking tours in and around the Atlas Mountains ...www.epicmorocco.co.uk/tours.html - Cached - Similar\pm Show more results from epicmorocco.co.ukMountain Biking Holidays in Morzine, Morocco, Megavalanche, La ... is Qflowmtb: Mountain Bike Holidays. Catered Chalet holidays in Morzine Les Gets, and Alped'Huez France. Guided trips in Morocco. Downhill, Cross Country ...www.flowmtb.com/ - United Kingdom - Cached - Similar
Mountain Biking Holidays in Morzine, Morocco, Megavalanche, La a
flowmtb: mountain biking trips in Morocco. Ride the best of the Atlas Mountainswww.flowmtb.com/morocco/unknown-morocco/ - United Kingdom - Cached - Similar
\pm Show more results from flowmtb.com
Mountain biking in Morocco with Wildcat is Q
The Anti Atlas Mountains in the South West of the country is the perfect location to enjoy youradventure mountain biking during the winter period. ...www.wildcat-bike-tours co.uk/.../Mountain-biking-morocco/index.htm - Cached - Similar
Bike Tours Since 1985. Morocco Road Tuareg Trail - Anti Atlas is Q
Morocco Road and Mountain bike Tours - The Tuareg Trail. The Anti Atlas ...
www.wildcat-bike-tours co.uk/morocco-tuareg.html - Cached - Similar
Bike Tours Since 1985. Morocco Mountain Bike Tour - The Tuareg Trail $\}$
Morocco MTB Tour The Tuareg Trail - Anti Atlas Mountains. The Anti Atlas ...
www.wildcat-bike-tours.co.uk/morocco-tuareg-mtb.htm - Cached

Search engine -- behind the scene

The search engine (SE) index:

- A list of words; each word is associated with a list of URL's that mention it
- The lists are maintained by hard-working robots

Typical search scenario:

- User enters a keyword
- The SE searches the index
- The SE returns a list of URLs that mention this word; the list is sorted by PageRank

The search engine must be

- Reliable
- Efficient

Opening the black box:

- Searching algorithms
- Sorting algorithms.

keyword	URLs
mohican	$11,4,5$
more	2,11
morgan	$13,100,1,7$
mormon	4,83
morning	12,4
morocco	$1,7,4,5$
mortal	17
mortgage	81,9
mountain	$10,3,5,4$
nader	9
nalini	$5,11,12,95$
name	$17,2,8$
namibia	5,17
nancy	$3,51,7,9,1$
never	19
nike	55,21
ninex	$17,3,308$
nitro	91,7

Sequential search

Input: a value x and a list of N values
Output: if x is found, its location; else -1
Strategy: march through the list

What is the running-time of sequential search?

- On which input?
- We normally carry out worst-case analysis
- Worst-case running time is N steps.
(

Input: a value x and a sorted list of N values Output: if x is found, its location; else -1

Strategy: Divide and conquer

What is the running time of binary search?

- It's the number of times you can divide n by 2
- Worst-case running time is $\log _{2} \mathrm{~N}$ steps.

keyword	URLs
mohican	$11,4,5$
more	2,11
morgan	$13,100,1,7$
mormon	4,83
morning	12,4
morocco	$1,7,4,5$
mortal	17
mortgage	81,9
mountain	$10,3,5,4$
nader	9
nalini	$5,11,12,95$
name	$17,2,8$
namibia	5,17
nancy	$3,51,7,9,1$
never	19
nike	55,21
ninex	$17,3,308$
nitro	91,7

Sequential search revisited

Data:

0	1	1	3	4	5	6	7	8	9
20	7	51	97	2	9	72	83	91	15

```
// Find the index of x in an array
for i = 0 .. N-1
    if a[i] = x
        return i
return -1
```

If the array is of size N, how many steps will it take to find an item?

- In the best case? 1
- In the worst case? N
- On average? (*) $(1+2+3+\ldots+N) / N=\frac{1}{2}(N+1)$
(Asuming a uniform distribution)

Binary search revisited

Data (sorted):
:---:

```
// Find the index of x in a sorted array
low = 0
```

high $=\mathrm{N}-1$
while (low <= high)
med = (low + high) / 2
if ($\mathrm{x}=\mathrm{a}$ [med])
return med
if (x < a[med])
high = med - 1
else
low $=$ med +1
return -1

Sample run ($x=72$):
Iteration low high med Test

0	0	9	4	$72>20$
1	5	9	7	$72<83$
2	5	6	5	$72>51$
3	6	6	6	$72=72$

```
while (low <= high)
    med = (low + high) / 2
    if (x = a[med])
        return med
    if (x < a[med])
        high = med - 1
    else
        low = med + 1
```

How many iterations in this loop?

- In each iteration we halve the value of (high - low)
- At the beginning: (high-low) $=\mathrm{N}-\mathrm{O}=\mathrm{N}$
- How many times can you halve N ? $\log _{2} N$

Thus, the number of steps to find any value is $\log _{2} N$.

Why logarithmic running time is sweet

	Seq.	Binary						
Input size:	N	Run-time:	N	$\log _{2} \mathrm{~N},	$	8	8	3
---:	---:	---:						
16	16	4						
32	32	5						
64	64	6						
100	100	7						
1,000	1,000	10						
$1,000,000$	$1,000,000$	20						
$1,000,000,000$	$1,000,000,000$	30						

Why is $\log _{2} \mathrm{~N}$ attractive?

- Because $\log _{2}(2 N)=\log _{2} N+1$
- A search engine has to search 1 billion records; it takes 30 steps;
Sometimes soon it will have to search 2 billion records; this will take 31 steps
- When the size of the Internet doubles, each search requires one more step.

Not bad!

Outline

Introduction

- Computational problems
- Algorithms

Search algorithms

- Motivation
- Sequential search
- Binary search
- Comparison

Running-time analysis

- Performance monitoring
- Big O analysis

Empirical testing of Java's performance on your computer

```
import java.uti1.*;
public class PerformanceEvaluation {
    public static void main(String[] args) {
        int i = 0;
        double d = 1.618;
        Simpleobject obj;
        fina1 int numIterations = 1000000000;
        long startTime = System.currentTimeMillis();
        for (i = 0 ; i < numIterations ; i++){
            // Put here the operation you wish to time
            // d = 1.0 / d;
            // obj.m();
            // obj = new Simpleobject();
        }
```

 long duration = System. currentTimemiliis() - startTime;
 System.out.println("Duration in ms: " + duration);
 \}
 \}
public class simpleobject \{
private int $x=0$;
public void m() \{ x++; \}
\}

These performance figures vary greatly on different machines

Thus, although empirical testing is useful, it is quite useless from a theoretical point of view.

Counting program operations

- We can count the number of operations that the algorithm performs:
- Arithmetic: (low + high)/2
- Comparison: if ($x=a[m e d]$) ...
- Assignment: low $=$ med +1
- Branching: while (low <= high)
- Etc.
- But these operations..

```
while (low <= high)
    med = (low + high) / 2
    if (x = a[med])
        return med
    if (x < a[med])
        high = med - 1
    else
        low = med + 1
```

- Are not atomic
- Are not low-level
- Don't run in the same time
- Run in different times on different hardware / software platforms.
- Thus counting operations is also quite useless from a theoretical point of view.

Running time analysis

The actual running time of a any given algorithm depends upon:

- The algorithm
- The input
- The implementation language
- The compiler
- The OS
- The hardware

Let's make all
these factors irrelevant

- Other programs running on the computer
- And more.

Formal run-time analysis:
Neutralize all the platform-specific details; Focus instead on one thing only:
Running-time of the algorithm as a function of the input size: $\mathrm{t}(\mathrm{N})$.

Running time analysis

We seek a function $\mathrm{t}(\mathrm{N})$ which will be invariant over hardware and software.
Example: print a multiplication table of size N by N

```
print "enter the table's size:"
```

 read N
 for \(\mathbf{i}=0 . . \mathrm{N}-1\)
 for \(\mathrm{j}=0 . . \mathrm{N}-1\)
 print \(i=j\);
 println
 Running time analysis:

- The running time $t(N)$ is often a polynomial function in N, the input's size
- Instead of looking at $t(N)$, we ignore all the constants and all the terms except for the highest degree of N
- Example: if $t(N)=N^{2}+N+2$ we say that the running time is "order of $N^{2 \prime \prime}$
- Indeed, for realistically large N's, the high order term dominates the running-time
- Running time analysis: a nice example of how to focus on the big picture.

