
Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 1

Software
Fundamentals

Introduction to Computer Science
Shimon Schocken
IDC Herzliya

Lecture 6-2

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 2

Turing machine

Alan Turing
(1912 – 1954)

Turing machine:

A venerable computing abstraction, used
mainly in theoretical computer science.

(Drawing by Roger Penrose, The Emperor’s New Mind)

“Hardware:”

State character write advance goto

1 sp - R 1

1 1 1 R 1

1 = sp R 2

2 1 = L 3

2 - sp L Halt

3 1 1 L 3

3 - - L 4

4 sp sp L 4

4 1 sp R 1

State character write advance goto

1 sp - R 1

1 1 1 R 1

1 = sp R 2

2 1 = L 3

2 - sp L Halt

3 1 1 L 3

3 - - L 4

4 sp sp L 4

4 1 sp R 1

“Software:”

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 3

Simple computer models

Turing machine

short
term

(main)
memory

input
device

output
device

long term
(external)
memory

processor

Von Neumann machine

Vic machine

Q: Which model is more powerful?

A: They are all equivalent

Q: How powerful are they?

A: Surprisingly powerful.

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 4

On the expressive power of simple computer models (say, Vic)

We can write programs that compute:

� x + y

� x - y

� x * y

� x / y

� xy

� 5 * 173 - 16 * (-9)12 + 11 * 275

� sqrt(X), log(x), sin(x), exp(x), ...

� Etc.

� sum up a series

� count a series

� compute average & variance

� compute max(x,y)

� compute the max of a series

� sort a series

� merge two series

� find an item in a series

� Etc.

We can also write programs that:

� Big Question: Can a simple computer like Vic do anything we like?

� Big Answer: For any program, running on any computer, there is an equivalent Vic
program that does the same thing

� (This follows from the Church-Turing conjecture)

� But what about the efficiency?

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 5

Software fundamentals

� Simple computer models

� Low level language improvements

� High level languages

� Compilation models

� Reverse engineering

� Operating systems

� Applets

� KISS

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 6

From a simple computer model to a real computer

� We’ll start at the bottom, improving the machine language:

� More commands

� Symbolic commands.

� Previous lecture:
from a simple computer model to a more realistic hardware architecture

� Current lecture: from simple machine language to high level software

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 7

Software improvement: more commands

Vic has 10 commands

The instruction set of a typical CPU (e.g. from the MIPS or X86 families) has 100+
commands, supporting at least the following operations:

� Add, subtract

� Multiply, divide

� And, Or, Not

� Shift operations

� Improved memory access

Modern machine languages also support:

� Subroutines

� Modular programming techniques.

On both integer and floating
point operands

Bit-wise operations

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 8

Software improvement: symbolic commands

Once we move to symbolic commands we no longer have to worry
about command numbers and physical memory addresses

But … can we do better than that?

load zero

store sum

read

store x

NEXT:

gotoz END
load x

add sum

store sum

read

store x

goto NEXT

END:
load sum

write

stop

load zero

store sum

read

store x

NEXT:

gotoz END
load x

add sum

store sum

read

store x

goto NEXT

END:
load sum

write

stop

Program

Symbolic Machine language

Translate

Executable code

00

01

02

03

04

05

06

07

08

09

10

11

12

13

398

490

800

491

611

391

190

490

800

491

504

390

900

000

398

490

800

491

611

391

190

490

800

491

504

390

900

000

sum = 0

read x

NEXT:

if x = 0 goto END

add x to sum

read x

goto NEXT

END:

write sum

stop

sum = 0

read x

NEXT:

if x = 0 goto END

add x to sum

read x

goto NEXT

END:

write sum

stop

Algorithm

(Task: Sum up a series of numbers
that ends with a zero)

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 9

High level language

� This begins to look like Java

� Modern programming languages don’t
use labels and GOTOs; instead, they
feature control structures
like if and while

� To translate such programs into machine
language, we need a compiler.

Same as before

Compile

load zero

store sum

read

store x

BEGINWHILE:

gotoz ENDWHILE

load x
add sum

store sum

read

store x

goto BEGINWHILE

ENDWHILE:

load sum
write

stop

load zero

store sum

read

store x

BEGINWHILE:

gotoz ENDWHILE

load x
add sum

store sum

read

store x

goto BEGINWHILE

ENDWHILE:

load sum
write

stop

Symbolic machine language

sum = 0

read x

while x != 0 {

sum = sum + x

read x

}

write sum

stop

sum = 0

read x

while x != 0 {

sum = sum + x

read x

}

write sum

stop

High level language

Program

Think…

(Task: Sum up a series of numbers
that ends with a zero)

Translate

Executable code

00

01

02

03

04

05

06

07

08

09

10

11

12

13

398

490

800

491

611

391

190

490

800

491

504

390

900

000

398

490

800

491

611

391

190

490

800

491

504

390

900

000

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 10

High-level language: a crucial abstraction

� HL programs are easy to read,
maintain and extend

� HL programs make no assumptions
about the underlying hardware

� The same HL program can be compiled
for different computer platforms
(implications for users, SW companies,
HW companies, competition, innovation)

� Users don’t have to see the HL source code;
They get only the executable code. This way, software companies can protect their
intellectual property. Important exception: open source

� Computer scientists can invent all sorts of HL languages, designed for different
purposes; As long as we can translate the HL code to machine language, the language
can be as abstract as we want (what about English?)

One of the most important ideas in CS: The notion of a HL language abstracts the
hardware away from the programmer and the user.

source
code

High Level
Language

executable
codeCompiler

algorithm

Runtime
client

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 11

High level programming languages: a Tower of Babel

Programming Style

� Procedural: Machine languages, C, Pascal, …

� Object-oriented: C++, Java, C# , …

� Object-based: JavaScript, Visual Basic, …

� Special paradigms: functional languages,
logical languages, …

“Java is simple, object-oriented, distributed, interpreted, robust, secure,
architecture-neutral, portable, high-performance, multithreaded, and dynamic
language.” (Sun literature)

Purpose:

� General purpose: C, Java, C#, Python, …

� Special purpose:

� Data: SQL, …

� Text: Latex, …

� Presentation: HTML, …

� Scripting: Flash, …

� Educational: Pascal, …

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 12

Software fundamentals

� Simple computer models

� Low level language improvements

� High level languages

� Compilation models

� Reverse engineering

� Operating systems

� Applets

� KISS

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 13

Compilation models

Java
compiler

Java program

Bytecode

Executable1

JVM1

Executable2

JVM2

Executablen

JVMn

...

...

Internet

Executable2

C
compiler2

C
compiler1

C program

Executable1

One-tier
compilation
model

Two-tier
compilation
model

Executablen

C
compilern

...

...

Server

C
li
e
nt

Major characteristics of the resulting code:

� One-tier:
efficient, not portable, can be unsafe

� Two-tier:
less efficient, portable, safe.

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 14

Java and C#

Java
compiler

Java program

Bytecode

Executable1

JVM1

Executable2

JVM2

Executablen

JVMn

...

...

Internet

C#
compiler

C# program

CIL

Executable1

CLR1

Executable2

CLR2

Executablen

CLRn

...

...

Internet

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 15

Java Bytecode

// prints the numbers 0 to 5

public class PrintSomeNumbers {

public static void main(String[] args){

int i = 0;

while (i < 6) {

// print the current value of i

System.out.println(i);

i = i + 1;

}

System.out.println(“Done”);

}

}

// prints the numbers 0 to 5

public class PrintSomeNumbers {

public static void main(String[] args){

int i = 0;

while (i < 6) {

// print the current value of i

System.out.println(i);

i = i + 1;

}

System.out.println(“Done”);

}

}

Java source code (PrintSomeNumbers.java)

Compiled from "PrintSomeNumbers.java"
public class PrintSomeNumbers

extends java.lang.Object{
public PrintSomeNumbers();
Code:
0: aload_0
1: invokespecial #1;
4: return

public static void main(java.lang.String[]);
Code:
0: iconst_0
1: istore_1
2: iload_1
3: bipush 6
5: if_icmpge 22
8: getstatic #2;
11: iload_1
12: invokevirtual #3;
15: iload_1
16: iconst_1
17: iadd
18: istore_1
19: goto 2
22: getstatic #2;
25: ldc #4;
27: invokevirtual #5;
30: return

}

Compiled from "PrintSomeNumbers.java"
public class PrintSomeNumbers

extends java.lang.Object{
public PrintSomeNumbers();
Code:
0: aload_0
1: invokespecial #1;
4: return

public static void main(java.lang.String[]);
Code:
0: iconst_0
1: istore_1
2: iload_1
3: bipush 6
5: if_icmpge 22
8: getstatic #2;
11: iload_1
12: invokevirtual #3;
15: iload_1
16: iconst_1
17: iadd
18: istore_1
19: goto 2
22: getstatic #2;
25: ldc #4;
27: invokevirtual #5;
30: return

}

Compiled bytecode (PrintSomeNumbers.class)

The Java code is translated by the compiler
into an equivalent bytecode designed to
run on an abstract virtual machine

The bytecode and the VM abstraction are
then translated into machine language by
the JVM

� The bytecode is CPU-agnostic

� The JVM is CPU-specific.

the bytecode of any
FileName.class file can be
viewed via

javap –c FileName.java

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 16

Reverse engineering

� Decompiler: a program that gets low-level code (e.g. bytecode) and constructs from
it high-level code (e.g. Java code)

� Obfuscator: a program that gets a source file as input and obfuscates it to make
decompilation hard

� Reverse engineering: trying to build something “backwards”:

� Decompilation

� From the program’s actions and UI

� Reverse engineering is an intricate art
that may involve violation of intellectual property.

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 17

Compilers VS interpreters

Compiler: Translates from a high-level language into a a lower-level language.

Examples:

� Java compiler (from Java to bytecode)

� C compiler (from C to machine language)

Interpreter: Translates and executes a given code. Each statement is translated and
executed separately, in real time. Examples:

� Python interpreter

� Lisp interpreter

� JavaScript interpreter

� Compiled code: translated once and executed for ever
(there is no need to have access to the source code);

� Interpreted code: re-translated each time it runs.

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 18

Software fundamentals

� Simple computer models

� Low level language improvements

� High level languages

� Compilation models

� Reverse engineering

� Operating systems

� Applets

� KISS

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 19

Operating Systems

An operating system (OS) is a software host that runs in the background all the time, providing many
services to application programs that run on top of it

User’s view of the OS

� GUI

� Files / directories management

� Security

� Communications

� Etc.

Programmer view of the OS:

� Disk access

� Device drivers

� Memory management

� Process management

� Etc.

High level languages hide the gory OS details from the programmer.

Linux
Windows

Mac OS Android

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 20

Java Applets

� Java application: a stand-alone program.
The resulting bytecode executes by the JVM
residing on a local client computer.
Runs in the OS environment

� Java applet: a bytecode file is linked to in an
HTML document, transported over the
Internet, and executed by a web browser

� How applets work:

� All major web browsers come with
a built-in JVM

� Therefore, every device that has a web
browser can run Java applets

� Realizing Java’s vision of portable code,
running over the web on multiple clients.

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 21

Java Applet anatomy

<Html>

<Head>

<Title>An applet demo:</Title>

</Head>

<Body>

A Java applet demo, drawing the olympic logo:

<Applet Code="Olympics.class" width=500 Height=250>

</Applet>

</Body>

</Html>

<Html>

<Head>

<Title>An applet demo:</Title>

</Head>

<Body>

A Java applet demo, drawing the olympic logo:

<Applet Code="Olympics.class" width=500 Height=250>

</Applet>

</Body>

</Html>

AppletDemo.html

import javax.swing.JApplet;

import java.awt.*;

public class Olympics extends JApplet {

public void paint (Graphics page) {

page.drawOval(50, 50, 80, 80);

page.drawOval(150, 50, 80, 80);

page.drawOval(250, 50, 80, 80);

page.drawOval(100, 80, 80, 80);

page.drawOval(200, 80, 80, 80);

}

}

import javax.swing.JApplet;

import java.awt.*;

public class Olympics extends JApplet {

public void paint (Graphics page) {

page.drawOval(50, 50, 80, 80);

page.drawOval(150, 50, 80, 80);

page.drawOval(250, 50, 80, 80);

page.drawOval(100, 80, 80, 80);

page.drawOval(200, 80, 80, 80);

}

}

Olympics.java

� This applet uses Java’s
Graphics classes

� Since the applet runs inside
a larger program (browser),
it does not require a Main
method.

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 22

And if you REALLY want to understand how computers work …

Then the best way to do it is to build a computer from scratch – hardware and software,
and then write some computer game on it.

More details: www.idc.ac.il/tecs

 "What I cannot create,
I do not understand.“

 (Richard Feynman)

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 23

Software fundamentals

� Simple computer models

� Low level language improvements

� High level languages

� Compilation models

� Reverse engineering

� Operating systems

� Applets

� End notes

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 24

The road from low level to high level

Looking back:

� We started with a very primitive machine language

� Then we got rid of numeric commands, using symbols instead

� Then we got rid of physical addresses, line numbers, and register names

� Then we got rid of labels and GOTO commands

� We ended up with an elegant high level language

In each step we created a new abstraction;
Once we show that the abstraction can be implemented,
we no longer care about the implementation

Computer science consists of thousands of layered abstractions;
The bottom layer is based on transistors and logic gates;
the upper layer is human intelligence

Computer scientists often invent an abstraction (like Vic) and then start playing
with it. Good abstractions are simple, expressive, and scalable.

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 25

The case for simplicity

The logical principles underlying hardware are simple

The logical principles underlying software are simple

Good science:
Explaining maximum phenomena with minimum rules

Good engineering:
Creating maximum functionality with a few simple components

Hardware-software architectures are a prime example of good science leading to good
engineering.

 “Designers know they

have achieved perfection not

when there is nothing left to

add, but when there is nothing

left to take away.”

(Antoine de Saint-Exupry)

 “All things being equal, simpler

solutions tend to be better”

 (Occam’s Razor)

Software Fundamentals, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 26

Endnote: Alan Turing and the Enigma

� Great biography:
“Alan Turing: The Enigma”,
by Andrew Hodges, Walker & Co., 2000.

Alan Turing
1912 - 1954

Bletchley Park

