Introduction to Computer Science
Shimon Schocken
IDC Herzliya

Lecture -2

Writing Classes IT

Class Writing: contents

::> B Wrappers / boxing (doesn't belong here, but we have to cover it somewhere ...)
B Overloading
B Methods:
e Instance methods
e Static methods
e Private methods
B Cadll by value / reference
B Encapsulation

B Visibility

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 2

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Wrapper classes

Values of primitive types, say the int value 25, are /iterals
In some situations, it is necessary to treat, say, 25, as an object

For this purpose, Java provides a class called 1nteger

There are nine such wrapper classes, designed to give object representations of the
corresponding primitive types:

Javd's primitive types: Corresponding wrapper classes:
byte Byte
short Short
int Integer
long Long
float Float
double Double
boolean Boolean
Char Character
void void

B Why do we need this headache?

B Because in some situations you simply cannot use primitive values.
For example, some collection classes are designed to contain objects only.

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 3

Example of wrapper classes in action: arraytist

4)
import java.util.ArrayList; ArrayList is like a
. || growable array that
public class Wrapperbemo { can accommodate any
public static void main(string[] args) { object type
ArrayList a = new ArrayList(Q); \ J
a.add(new Integer(1l));
a.add(new Integer(7)); e
a.add(new Boolean(true)); The el?ments of
a.add("bob"); 1 ArrayList must be
a.add("alice"); 7 \Objects.)
a.add(new Double(3.14)); true
for (object obj : a) bob
System.out.printin(obj); alice
3} 3.14

B InJava, every object is an object type;
that's why the for loop above works fine

B The loop is an example of polymorphic processing,
to be discussed later in the course.

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 4

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Wrapper classes contain useful type-oriented values and services

For example, the Integer class offers methods for
Q0 Converting a string into an Integer
0 Converting an int value into binary, hexa, octal

0 More useful methods, as well as the two fields MAX_VALUE, MIN_VALUE

So, in addition for creating and managing Integer objects, the Integer class is a library
of useful Integer- and int-oriented services

Similar methods are supplied by the other wrapper classes (Byte, short, Long, etc.) --
consult their APIs as needed.

string s = "43";

int x = Integer.parseInt(s); // x = 43
System.out.println(x); // prints 43
System.out.printin(Integer.toBinaryString(x)); // prints 10100
System.out.printIin(Integer.toHexString(x)); // prints 2b
System.out.printIin(Integer.MIN_VALUE); // prints -2147483648
System.out.println(Integer.MAX_VALUE); // prints 2147483647

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 5

Boxing / unboxing

Integer obj;

int x = 17;
obj = x; // Boxing: creates an Integer object representing 17
Obj++ // Error

obj = new Integer(19);
x = obj; // Unboxing: extracts 19 from the object and puts it in x
X++; // OK

Best practice advice

Prefer primitive types on boxed types.

When using boxed types, watch out for memory leaks.

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 6

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Class Writing: contents

B Wrappers / boxing
:> B Overloading
B Methods:
e Instance methods
e Static methods
e Private methods
B Call by value / reference

B Encapsulation

B Visibility
Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 7
Method overloading B Method signature: method name,
parameter names, parameter types
B Java allows defining different
public class SquareRootDemo { methods with the same name,
provided that they have different
public static void main(String args[]) { SignaTures

System.out.printin(sqrt(17)); ® Wh ;

. th Il k thod
System.out.printin(sqrt(17, 0.0001)); ‘\rAl'ieecr;mpeilgr(‘! deerfler:‘\::\)ineess%vrlr?iihho !
¥ method to invoke according to the
. arguments passed by the caller
static double sqrt(double x) {

return sqrt(x,0.1); (7 s B Advantages: Promotes shorter,
} fewer, and readable method names.

static double sqrt(double x, double precision) {
double root = x / 2;
while (Math.abs((root * root) - x) > precision) {
root = (root + (x / root)) / 2;

}
return root; WINDOWS system
}

} D:~demo>javac SquareRootDemo.java
D=~demo>java SquareRootDemo
<4_124828858612167
<4.123185785575862

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 8

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Constructor overloading: sankaccount revisited

public class BankAccount { Side comment:
// Account numbers are allocated as follows: 1,2,3, ... OO0P pur‘is*l’s would
private static int nextAccountNumber = 0; argue that the
private int number; // Generated "automatically" static variable
private String owner; // Supplied when an account is opened nextAccountNumber
private double balance; // Supplied when an account is opened (and the way

public BankAccount (String owner, double balance) { account numbers

this.number = ++nextAccountNumber; are handled by
this.owner = owner; this class) is
this.balance = balance; blasphemy, and
public BankAccount (String owner) { 'H"ey may be r‘ighT.
this(owner, 0);
b this(...): a call to another
constructor in this class
}
BankAccount bobAcc = new BankAccount("Bob", 1000);
BankAccount aliceAcc = new BankAccount("Alice");
Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 9

Class Writing: contents

B Wrappers / boxing
B Overloading
B Methods:
|:> e TInstance methods
e Static methods
e Private methods
B Cadll by value / reference
B Encapsulation

B Visibility

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 10

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Instance methods L client S

public class BankAccountDemo {

pubTlic static void main (String args[]) {
public class BankAccount { BankAccount bobAcc = new BankAccount("Bob", 1000);
BankAccount aliceAcc = new BankAccount("Alice");

private static int nextAccountNumber = 0;
System.out.printin(bobAcc);

private int number; System.out.printin(aliceAcc);
private String owner;
private double balance; aliceAcc.deposit(900);

bobAcc.withdraw(100) ;
// Constructors (previous slide) come here
System.out.printin(bobAcc);

public void deposit (double amount) { System.out.printin(aliceAcc);

balance = balance + amount;
}

D:~demo>java BankfAccountDemo

public void withdraw (double amount) { % E'i];ce EBBB

balance = balance - amount; i Boh 988
} 2 Alice 88
public int getNumber() { return number; } B Instance methods are designed
public string getowner() { return owner; } to operate on the current object

public double getBalance() { return balance; } . .
B Instance variables implement

public string tostring O { the object's data
return (number + "\t" + owner + .
"\t" + (int) balance); B Tnstance methods implement
} abstract object behaviors
‘}—
Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 11

Static methods | client 28

public class BankAccountDemo {

public class BankAccount {
// instead of calling:
private int number; aliceAcc.deposit(900);
private String owner;

private double balance; 7/ e wEid e

// Instead of writing the instance method: BankAccount. deposit(aliceAcct, 900)

public void deposit (double amount) {
balance = balance + amount; }

}

// we could have written the static method:
public static void deposit (BankAccount acct, double amount) {
acct.balance = acct.balance + amount;

}

// More methods

}

Every instance method can be re-written as a static method (passing the object as an
argument)

But, this will defeat the whole purpose of object-oriented programming!
Best practice advice:

B When it's natural to work with objects, use instance methods

B Don't mix instance and static methods in the same class.

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 12

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Private methods

public class BankAccount {

// Handles a deposit

public void deposit (double amount) {
double charge = commission(amount);
balance = balance + amount - charge;
this.transfer(charge, bankAcct)

}

// Returns the bank’s commission
private static double commission (double amount) {
return (Camount > 1000) ?

(amount * 0.01) : Using finals here will
(amount * 0.02)); be more sensible.

)

}...

Private methods: helper methods, designed to help other

methods in the class. Used to make the class code more modular.

Typically defined as static.

Best practice advice: when writing a private method, ask yourself
if the method really belongs to this class (design-wise). In some
cases, the answer may lead you to consider building another class.

How to handle bank

commissions:

We can open a special
account for the bank
itself, called bankAcct

Whenever we run a
transaction, we can
charge a commission
and fransfer it to
bankAcct

OOP purist:
Another static

member .. grrr
(commission)

}

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com

slide 13

Class Writing: contents

B Wrappers / boxing
B Overloading
B Methods:
e Instance methods
e Static methods
e Private methods
|:> B Call by value / reference
B Encapsulation

B Visibility

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com

slide 14

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Call by value / call by reference

<

public class BankAccount { Call by value:
private int number; Used when the parameter is
private String owner; of primitive type
private double balance; Caller side: the argument
value is computed and
// constructors and methods (previous slide) come here passed to the method
Callee side: the parameter
public void transferTo(double amount, BankAccount other) { is “read-only"
other.deposit(amount);
this.withdraw(amount);

} } L caller S

BankAccount bobAcc = new BankAccount(“Bob”, 1000);

BankAccount aliceAcc = new BankAccount(“Alice”);

Call by reference bobAcc.transfer(500, aliceAcc);
Used when the parameter is of

obJec.f fype . . System.out.printin(bobAcct.getAmount()); // 500
Caller side: a pointer to the object . .
is passed to the method System.out.printin(aliceAcct.getAmount()); // 500

Callee side: the method can change
the referred object.

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 15

Variable kinds and life cycle

public class BankAccount {

Static variables |———® private static int nextAccountNumber = 1;

private int number;

Instance variables |——e@ Private string owner; [Parameter variable]
private int balance; /
public void withdraw (int amount) {
Local variables |————®int balanceTemp = balance - amount

if (balanceTemp >= 0)
balance = balanceTemp;

else
// reject the withdrawl ... later

Static variables: created the first time a method from the class is invoked

Instance variables: created when the object is created;
recycled when the object is reclaimed

Local variables: created when the method is invoked;
recycled when the method returns

Parameter variables: same as local variables.
Initialized by the arguments supplied by the caller.

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 16

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Class design

BankAccount abstraction (revisited):

BankA| t(stri ,double bal
A bank account is characterized by: ‘ ankaccount(string owner,double balance) I

owner, balance, and a unique
identifying number.

Things we want o do with bank accounts: / int getNumber()
o Create accounts /

o Query the account's data

o Show the current balance

5 < ‘ duoble getBalance() I
an
Deposit money kACCOunt

Withdraw money \ ‘

Transfer money
More ...

String getowner() I

O 0O o0 o

void deposit(...) I

Best practice advice:

B Design: Build your class to
reflect the abstraction: each
abstract operation should be
supported by a method

void withdraw(...) I

void transfer(...) I

B Implementation: Build your class

in a way that makes clients view ;
itasa >I:I>lack box. More BankAccount services ... I

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 17

Encapsulation

. deposit()
Clients b Methods withdraw()

—

number
owner transfer()
balance \

getBalance()

Encapsulation: EtC..

B Hiding, or encapsulating, the internal state
of the object from the outside

B Protects the integrity of the object by preventing
clients from setting its internal data into an
invalid, inconsistent, or damaged state

B A critically important OO design objective

B How to implement encapsulation? Next slide.

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 18

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Controlling access to classes, fields, and methods
Visibility modifiers
o public: visible o any class
o private: visible within the current class
o protected: visible to classes in the same package (package-private) and to sub-classes
0 No modifier: package-private
pubTic private Best practice advice:
Instance Violate ENTorce B Use the most restrictive access
Variables encapsulation encapsulation level that makes sense
S o B Use private fields and define
i i WFClR CuieEr b1ic methods to handle the
Methods Pr‘oxl;iiusee;:;ces methods in the publicm m
same class B Avoid public fields except for
finals
The class itself can be either W Remember: public fields lock
] you into a particular
0 Public implementation and sabotage
0 package-private (no visibility modifier) your ability to change it later.
Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 19

Names matter

If your method and variable names are well-chosen, your code will read like prose:

If (car.speed() > 1.5 * SPEED_LIMIT)
speaker.generateAlert(“watch out for cops!”);

for (Employee emp : employees)
emp.setSalary (emp.getSalary() * 1.1);

An API is like a little language:

As a class designer, you have a lot of responsibility. Choose names that are:
e Self-explanatory
e Consistent (bad example: remove, delete, discard)

e English verbs and nouns (or understandable mutilations thereof).

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 20

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

