
Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 1

Writing Classes I

Introduction to Computer Science
Shimon Schocken
IDC Herzliya

Lecture 4-2

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 2

Classes

Two viewpoints on classes:

� Client view: how to use an existing class

� Server view: how to design, implement, and maintain classes

Uses of classes:

� Utility classes: Math, arrays, …

� ADTs: String, Turtle, BankAccount, …

� More uses of classes (later in the course)

Where Java classes come from:

� The Java standard class library

� Classes that other people write and make available to me

� Classes that I write.

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 3

Outline

� Modularity

� Class abstraction

� Class specification

� Class anatomy

� Fields

� Constructors

� Methods

� Accessors and Mutators

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 4

Modularity

As software architects, we should always strive to divide our work into small, manageable modules

Each module must have a …

� Clear, simple, and sensible function

� Contract describing its usage

� Self-contained design that enables unit-testing and local maintenance

Example:

� When describing a class abstraction, we think in terms of well-defined operations

� When designing a class, we divide its functionality into well-defined methods

� When writing a method, we divide its code into manageable and well-understood segments

Modularity is a general systems concept, typically defined as a continuum describing
the degree to which a system’s components may be separated and recombined. It
refers to both the tightness of coupling between components, and the degree to
which the “rules” of the system architecture enable (or prohibit) the mixing and
matching of components. (Wikipedia)

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 5

Un-modular code (example)

public class SquareRootDemo1 {

private static final double EPSILON = 0.1;

public static void main(String args[]) {

Scanner scan = new Scanner(System.in);

// Get the user's input

System.out.print("Enter a number: ");

double x = scan.nextDouble();

// Compute the square root

double root = x / 2;

while (Math.abs((root * root) - x) > EPSILON)

// improve the guess

root = (root + (x / root)) / 2;

// Print the result

System.out.println("The square root is: " + root);

}

}

public class SquareRootDemo1 {

private static final double EPSILON = 0.1;

public static void main(String args[]) {

Scanner scan = new Scanner(System.in);

// Get the user's input

System.out.print("Enter a number: ");

double x = scan.nextDouble();

// Compute the square root

double root = x / 2;

while (Math.abs((root * root) - x) > EPSILON)

// improve the guess

root = (root + (x / root)) / 2;

// Print the result

System.out.println("The square root is: " + root);

}

}
Problems with unmodular code

� The I/O and the processing are mixed together

� It’s hard to tell which part of the program is responsible for which bug

� If we’ll want to change the I/O only, we have to change the entire class

� The sqrt services are inaccessible to other clients

� The design is not elegant

� Solution: divide and conquer.

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 6

Modular version

import java.util.Scanner;

public class SquareRootDemo {

public static void main(String args[]) {

Scanner scan = new Scanner(System.in);

// Get a number from the user and square it

System.out.print("Enter a number: ");

double x = scan.nextDouble();

System.out.println(“The square root is: " + sqrt(x));

}

// Computes the square root function

public static double sqrt(double x) {

final double EPSILON = 0.1;

double root = x / 2;

while (Math.abs((root * root) - x) > EPSILON)

root = (root + (x / root)) / 2;

return root;

}

}

import java.util.Scanner;

public class SquareRootDemo {

public static void main(String args[]) {

Scanner scan = new Scanner(System.in);

// Get a number from the user and square it

System.out.print("Enter a number: ");

double x = scan.nextDouble();

System.out.println(“The square root is: " + sqrt(x));

}

// Computes the square root function

public static double sqrt(double x) {

final double EPSILON = 0.1;

double root = x / 2;

while (Math.abs((root * root) - x) > EPSILON)

root = (root + (x / root)) / 2;

return root;

}

}

What have we gained?

� Readability

� Elegance

� Unit testing

� Code re-use

� Parallel development

I/O

processing

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 7

Abstraction

The task of program design begins with abstractions

To describe an object abstraction, we think about it terms of:

� What are the object’s attributes? (a data-oriented view, leading to fields)

� What are the object’s behaviors? (a functional view, leading to methods)

Abstraction is a conceptual process by which higher, more conceptual concepts are
derived from the usage and classification of literal (i.e. "real" or "concrete")
concepts. Abstractions may be formed by reducing the information content of a
concept or an observable phenomenon, typically to retain only information which is
relevant for a particular purpose. For example, abstracting a leather soccer ball to
the more general idea of a ball retains only the information on general ball
attributes and behavior, eliminating the characteristics of that particular ball.
(Wikipedia)

Abstractions are worked out via requirements analysis

After describing our abstractions, we can move on to write the system’s specification

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 8

Specification (aka “spec”)

Two CS views on specification:

� Formal: a specification is a mathematical artifact that can be analyzed to prove
system’s correctness (with some caveats)

� Informal: a specification is an informal document that gives the development team
enough information on how to design the system.

In this course we take the latter view.

A specification is a clear and succinct description of software or hardware that may be
used to develop an implementation. It describes what the system should do, not
(necessarily) how the system should do it. Given such a specification, it is possible
to demonstrate that a candidate system design is correct with respect to the
specification. This has the advantage that incorrect candidate system designs can
be revised before a major investment has been made in actually implementing the
design. A design (or implementation) cannot be declared “correct” in isolation, but
only “correct with respect to a given specification”.

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 9

A Clock is an object that keeps and reports time in the format
hours:minutes:seconds. Hours must be in the range 0 to 23,
minutes and seconds must be in the range 0 to 59 each.

Clock’s data:

Hours, minutes, seconds

Clock’s behaviors:

� Construct a clock and set its time to a given time.

� {Get , set} the clock’s {hours , minutes , seconds}.
(that’s 6 different operations)

� Set the clock’s time.

� Advance the clock by one {second, minute, hour}.
(that’s 3 different operations)

� Determine if this clock’s time is later than some other clock’s time

� Display the clock’s time in the form hours:minutes:seconds

A Clock is an object that keeps and reports time in the format
hours:minutes:seconds. Hours must be in the range 0 to 23,
minutes and seconds must be in the range 0 to 59 each.

Clock’s data:

Hours, minutes, seconds

Clock’s behaviors:

� Construct a clock and set its time to a given time.

� {Get , set} the clock’s {hours , minutes , seconds}.
(that’s 6 different operations)

� Set the clock’s time.

� Advance the clock by one {second, minute, hour}.
(that’s 3 different operations)

� Determine if this clock’s time is later than some other clock’s time

� Display the clock’s time in the form hours:minutes:seconds

Clocks

Clock class specification (partial)

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 10

Using the Clock (example)

public class ClockTest {

public static void main (String args[]) {

Clock c = new Clock(14,0,0);

System.out.println("The clock time is: " + c);

// Advances the clock 80 seconds

for (int j = 0; j < 80; j++)

c.advanceSecond();

System.out.println("The clock time is: " + c);

}

}

public class ClockTest {

public static void main (String args[]) {

Clock c = new Clock(14,0,0);

System.out.println("The clock time is: " + c);

// Advances the clock 80 seconds

for (int j = 0; j < 80; j++)

c.advanceSecond();

System.out.println("The clock time is: " + c);

}

}

Client code

If the Clock class has no toString implementation … Fixed according to the class spec …

Maybe delay this to the next Class Writing lecture (toString)

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 11

Outline

� Modularity

� Class abstraction

� Class specification

� Class anatomy

� Fields

� Constructors

� Methods

� Accessors and Mutators

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 12

public class Clock {

// The clock state

private int hours, minutes, seconds;

// More fields ...

// Clock constructor

public Clock(int h, int m, int s);

// More constructors ...

// Advance the clock one second forward

public void advanceSecond();

public int getHours();

public int getMinutes();

public int getSeconds();

// More methods ...

}

public class Clock {

// The clock state

private int hours, minutes, seconds;

// More fields ...

// Clock constructor

public Clock(int h, int m, int s);

// More constructors ...

// Advance the clock one second forward

public void advanceSecond();

public int getHours();

public int getMinutes();

public int getSeconds();

// More methods ...

}

Clock class structure (method signatures)

Class anatomy

Methods

Constructors

Fields

Class members:

Taken together, the
fields and the
methods are called
the “class members”

Visibility:

Class members can
have different
visibility outside the
class
(private / public).

More about
visibility, later.

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 13

Fields

� Objects are typically characterized
by a set of attributes, aka
properties

� These are implemented using Fields,
aka private variables or instance
variables

� Taken together, the fields
represent the object's state (data)

� Fields are variables:
can be of either primitive or class
types

� Each object has a private and
separate set of field values

� The fields are typically initialized
by constructors

� Uninitialized fields are set by the
compiler to default values

public class Clock {

// The clock state

private int hours, minutes, seconds;

// More fields ...

// Clock constructor

public Clock(int h, int m, int s);

// More constructors ...

// Advance the clock one second forward

public void advanceSecond();

// Accessors

public int getHours();

public int getMinutes();

public int getSeconds();

// More methods ...

}

public class Clock {

// The clock state

private int hours, minutes, seconds;

// More fields ...

// Clock constructor

public Clock(int h, int m, int s);

// More constructors ...

// Advance the clock one second forward

public void advanceSecond();

// Accessors

public int getHours();

public int getMinutes();

public int getSeconds();

// More methods ...

}

� Within the class code, the field x of object c is accessible using the syntax c.x;
where this.x or simply x refer to field x of the current object.

Clock class structure

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 14

Constructors

public class Clock {

private int hours, minutes, seconds;

public Clock(int h, int m, int s) {

setTime(h, m, s);

}

public Clock(); {

setTime(0, 0, 0);

}

// ...

}

public class Clock {

private int hours, minutes, seconds;

public Clock(int h, int m, int s) {

setTime(h, m, s);

}

public Clock(); {

setTime(0, 0, 0);

}

// ...

}

server � When creating a new object, we
normally wish to specify its initial
state

� This is done using constructors

� Constructors can be overloaded

� If you don’t write a constructor,
the compiler inserts a default
constructor into the class code

Best practice: always write your own
constructor(s), even if they do
nothing.

Public class SomeClass {

...

Clock c1, c2;

...

c1 = new Clock(16,30,20);

c2 = new Clock();

Clock c3 = new Clock(12,0,0);

...

}

Public class SomeClass {

...

Clock c1, c2;

...

c1 = new Clock(16,30,20);

c2 = new Clock();

Clock c3 = new Clock(12,0,0);

...

}

client

// Default constructor, inserted

// to the class code by the

// compiler if the programmer did

// not define a constructor.

public Clock() {}

// Default constructor, inserted

// to the class code by the

// compiler if the programmer did

// not define a constructor.

public Clock() {}

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 15

Constructors: several ways to define a Clock constructor

public class Clock {

private int hours, minutes, seconds;

public class Clock {

private int hours, minutes, seconds;

public Clock(int h, int m, int s) {

this.hours = h;

this.minutes = m;

this.seconds = s;

}

public Clock(int h, int m, int s) {

this.hours = h;

this.minutes = m;

this.seconds = s;

}

public Clock(int h, int m, int s) {

hours = h;

minutes = m;

seconds = s;

}

public Clock(int h, int m, int s) {

hours = h;

minutes = m;

seconds = s;

}

public Clock(int hours, int minutes, int seconds) {

this.hours = hours;

this.minutes = minutes;

this.seconds = seconds;

}

public Clock(int hours, int minutes, int seconds) {

this.hours = hours;

this.minutes = minutes;

this.seconds = seconds;

}

this: a generic object
variable, pointing to
the current object.

Most readable

(In these examples we
assume that the class
has no setTime method)

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 16

� When an object variable is
declared, only the reference
variable is allocated

� Memory for the object
proper is allocated only if
and when a constructor is
invoked using new.

public class SomeClass {

...

Clock c1;

// Checkpoint 1

...

c1 = new Clock(13,0,0);

// Checkpoint 2

...

Clock c2 = new Clock(22,10,1);

// Checkpoint 3

...

}

public class SomeClass {

...

Clock c1;

// Checkpoint 1

...

c1 = new Clock(13,0,0);

// Checkpoint 2

...

Clock c2 = new Clock(22,10,1);

// Checkpoint 3

...

}

Creating Clock objects . . .

10102

Checkpoint 1

. . .

c1

. . .

.

7510110102

. . .

1375101

075102

075103

. . .

c1

*

Checkpoint 2

* : c1 object data

. . .

. . .

75101

92013

. . .

1375101

075102

075103

…. . .

22

10

1

c1

Checkpoint 3

92013

92014

92015

. . .

c2

. . .

10102

10103

*

**

* : c1 object data

** : c2 object data

Constructor anatomy: behind the scene

stack

heap

Memory area that holds the
variables of running methods

Memory area that holds object
and array data

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 17

Outline

� Modularity

� Class abstraction

� Class specification

� Class anatomy

� Fields

� Constructors

� Methods

� Accessors and Mutators

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 18

Methods

Method: a stand-alone piece of code, designed to carry out a well defined computation
or operation

Also called “subroutine” or “function” in other programming languages

Instance methods:

� Implement object behaviors

� Operate on the current object

Class (static) methods:

� Perform some general-purpose functionality

� Not associated with any particular object.

Best practice advice:

A class should contain either instance methods, or static methods, but not both.

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 19

Method definition and invocation (examples)

The desired behaviors of the object
are implemented by methods

Each method is designed to perform
one well-defined abstract
operation

public class Clock {

private int hours, minutes, seconds;

...

public int getHours() {

return hours;

}

public void setSeconds(int s) {

if ((s >= 0) && (s < 60))

seconds = s;

}

public void advanceSecond() {

if (seconds < 59) {

seconds++;

return;

}

else

seconds = 0;

if (minutes < 59)

minutes++;

else {

minutes = 0;

hours = hours < 23 ? hours+1 : 0;

}

...

}

public class Clock {

private int hours, minutes, seconds;

...

public int getHours() {

return hours;

}

public void setSeconds(int s) {

if ((s >= 0) && (s < 60))

seconds = s;

}

public void advanceSecond() {

if (seconds < 59) {

seconds++;

return;

}

else

seconds = 0;

if (minutes < 59)

minutes++;

else {

minutes = 0;

hours = hours < 23 ? hours+1 : 0;

}

...

}

server

Public class someClass {

...

Clock c = new Clock(12,0,0);

...

c.advanceSecond();

...

}

Public class someClass {

...

Clock c = new Clock(12,0,0);

...

c.advanceSecond();

...

}

client

Semantics:
invoke the secondElapsed method on c
(the object that c refers to).

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 20

Method parameters

� Methods may or may not have parameters

� A parameter is like a local variable which is initialized by the method’s caller.

public void setTime (int h, int m, int s) {

setHours(h);

setMinutes(m);

setSeconds(s);

}

public void setTime (int h, int m, int s) {

setHours(h);

setMinutes(m);

setSeconds(s);

}

callee

Public class someClass {

...

Clock c1 = new Clock(12, 0, 0);

...

c1.setTime(2, 15, 0);

...

}

Public class someClass {

...

Clock c1 = new Clock(12, 0, 0);

...

c1.setTime(2, 15, 0);

...

}

caller

Actual parameters
(arguments)

Formal parameters

Variable kinds in Java (wrap-up)

� Class (static) variable

� Private (field) variable

� Local variable

� Parameter

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 21

Method types and the return command

Void method: has no type and no return value

Typed method: has either a primitive type or an object type.
Must return a value that conforms to the method’s type.

public class Clock {

private int hours, minutes, seconds;

...

public intintintint getHours() {

return hours;

}

public voidvoidvoidvoid setHours(int h) {

this.hours = h;

}

public StringStringStringString toString() {

return (hours + “:" + minutes + “:" + seconds);

}

...

}

public class Clock {

private int hours, minutes, seconds;

...

public intintintint getHours() {

return hours;

}

public voidvoidvoidvoid setHours(int h) {

this.hours = h;

}

public StringStringStringString toString() {

return (hours + “:" + minutes + “:" + seconds);

}

...

}

server

public class SomeClass {

...

Clock c = new Clock(0,0,0);

...

// Calling a void method

c.setHours(17);

// Calling a typed method

int h = c.getHours();

// More examples

System.out.println(c);

int bla = Math.sqrt(c.getHours())

public class SomeClass {

...

Clock c = new Clock(0,0,0);

...

// Calling a void method

c.setHours(17);

// Calling a typed method

int h = c.getHours();

// More examples

System.out.println(c);

int bla = Math.sqrt(c.getHours())

client

If a method is of type int, then its
return value can be treated as an
int variable and can play any role
that an int variable is allowed to
play in Java expressions.

Same for any other method type.

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 22

Referring to objects and fields within the class code

public class Clock {

private int hours, minutes, seconds;

...

public boolean laterThan(Clock c) {

if (hours > c.hours)

return true;

if ((hours == c.hours) && (minutes > c.minutes))

return true;

if ((hours == c.hours) && (minutes == c.minutes) && (seconds > c.seconds))

return true;

return false;

}

public class Clock {

private int hours, minutes, seconds;

...

public boolean laterThan(Clock c) {

if (hours > c.hours)

return true;

if ((hours == c.hours) && (minutes > c.minutes))

return true;

if ((hours == c.hours) && (minutes == c.minutes) && (seconds > c.seconds))

return true;

return false;

}

public class SomeClass {

...

Clock c1 = new Clock(22,30,20);

Clock c2 = new Clock(22,30,5);

System.out.println(c1.laterThan(c2)); // true

System.out.println(c1.laterThan(new Clock(22,20,20))); // true

System.out.println(c1.laterThan(new Clock(21,30,20))); // true

System.out.println(c1.laterThan(new Clock(22,40,20))); // false

...

}

public class SomeClass {

...

Clock c1 = new Clock(22,30,20);

Clock c2 = new Clock(22,30,5);

System.out.println(c1.laterThan(c2)); // true

System.out.println(c1.laterThan(new Clock(22,20,20))); // true

System.out.println(c1.laterThan(new Clock(21,30,20))); // true

System.out.println(c1.laterThan(new Clock(22,40,20))); // false

...

}

server

client

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 23

Outline

� Modularity

� Class abstraction

� Class specification

� Class anatomy

� Fields

� Constructors

� Methods

� Accessors and Mutators

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 24

Accessor methods (getters)

Accessor methods: used to query the
object state, e.g. return values of private
variables

Enable controlled access to the object’s
state from the outside.

public class Clock {

private int hours, minutes, seconds;

...

public int getHours() {

return hours;

}

public int getMinutes() {

return minutes;

}

public int getSeconds() {

return seconds;

}

...

}

public class Clock {

private int hours, minutes, seconds;

...

public int getHours() {

return hours;

}

public int getMinutes() {

return minutes;

}

public int getSeconds() {

return seconds;

}

...

}

server

public class someClass {

...

Clock c = new Clock(12,0,0);

...

int h = c.getHours();

...

System.out.print(c.getSeconds())

...

}

public class someClass {

...

Clock c = new Clock(12,0,0);

...

int h = c.getHours();

...

System.out.print(c.getSeconds())

...

}

client

Best practice advice:

Define all fields as private and write accessor methods to facilitate their access.

An exception: record types (later)

Intorduction to Computer Science � IDC Herzliya � Shimon Schocken

Writing Classes, Shimon Schocken IDC Herzliya, www.intro2cs.com slide 25

Mutator methods (setters)

Mutator methods: used to set the
values of private variables

Enable controlled update of the
object’s state from the outside.

public class Clock {

private int hours, minutes, seconds;

...

public void setHours(int h) {

if ((h >= 0) && (h < 24))

hours = h;

}

public void setMinutes(int m) {

if ((m >= 0) && (m < 60))

minutes = m;

}

public void setSeconds(int s) {

if ((s >= 0) && (s < 60))

seconds = s;

}

...

}

public class Clock {

private int hours, minutes, seconds;

...

public void setHours(int h) {

if ((h >= 0) && (h < 24))

hours = h;

}

public void setMinutes(int m) {

if ((m >= 0) && (m < 60))

minutes = m;

}

public void setSeconds(int s) {

if ((s >= 0) && (s < 60))

seconds = s;

}

...

}

server

public class someClass {

...

int deadlineHour = 20;

...

Clock c = new Clock(12,0,0);

...

c.setHours(deadlineHour-1);

c.setMinutes(1);

c.setSeconds(scan.nextInt());

...

}

public class someClass {

...

int deadlineHour = 20;

...

Clock c = new Clock(12,0,0);

...

c.setHours(deadlineHour-1);

c.setMinutes(1);

c.setSeconds(scan.nextInt());

...

}

client

c.hours = deadlineHour - 1;

c.minutes = 1;

c.seconds = scan.nextInt());

c.hours = deadlineHour - 1;

c.minutes = 1;

c.seconds = scan.nextInt());

Instead of (if the fields were declared public):

Best practice advice: Always use private
variables to represent object’s attributes, and
write setter methods to test and set their values.

