
Intorduction to Computer Science � Shimon Schocken � IDC Herzliya

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 1

Introduction to Computer Science

Shimon Schocken

IDC Herzliya

Using Classes and Objects

Lecture 2-2:

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 2

Classes

When you write a Java program, you often have to use the services of other
classes; classes that you wrote, and classes written by other people.

A class is a self-contained module of code. Each class code is stored in a separate
file. If the class is called “Car”, then the Java code is stored in Car.java and
the compiled bytecode is stored in Car.class

Classes provide functionality: they enable us to carry out all sorts of
computations, and to create and manipulate objects

This functionality has many variants. For example, we can think of classes like
Car, CarRace, CarHistory, and so on. These classes are designed to represent and
do very different things.

Two viewpoints on classes:

� Client view: how to use existing classes

� Server view: how to design, implement, and maintain classes

This lecture

Later lectures

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 3

Outline

� Static classes

� Math

� Arrays (later)

� Classes that represent types (examples)

� Fraction

� bankAccount

� Turtle

� String

� Classes that generate things (examples)

� Random

(More kinds of classes – later in the course)

� Packages

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 4

Math class

ClassName.methodName(parameters)ClassName.methodName(parameters)

Syntax for invoking a static method:

// Variable r holds the value of some radius

System.out.println(“Circle area = “ + Math.PI * Math.pow(r,2));

// Variable r holds the value of some radius

System.out.println(“Circle area = “ + Math.PI * Math.pow(r,2));

Example:

How do you know which variables and methods the Math class offers and how to use them?

You consult the Math class interface.

Static variables
and
static methods
in the static
Math class

x

x10log

),(yxMin

x

y
x

Math.PI

Math.sqrt(x)

Math.log(x)

Math.min(x,y)

Math.abs(x)

Math.pow(x,y)

...

ClassName.variableNameClassName.variableName

Syntax for using a static variable:π

Represented in Java as:

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 5

Math class interface (partial)

A class interface
gives all the
information you
needs in order to
use the class
services

In OOP jargon,
“static” means
“not associated
with any object”

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 6

Static classes

Static classes are sometimes called “utility classes”

A utility class provides a library of methods that have something in common

Examples:

� Math: a library of mathematical operations

� Arrays: a library of array-oriented operations

(Disclaimer: The rest of this slide will make sense only at the end of this lecture)

In OOP, static classes are the exception: they go against the “OOP spirit”,
since they involve no objects

In a pure OOP world, everything is an object. So:

� Instead of saying z = Math.sqrt(x) an OOP purist would say z = x.sqrt()

� Instead of saying z = x + y an OOP purist would say z = x.add(y)

� Etc. – we’ll get back to this comment later.

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 7

Outline

� Static classes

� Math

� Arrays (later)

� Classes that represent types (examples)

� Fraction

� bankAccount

� Turtle

� String

� Classes that generate things (examples)

� Random

(More kinds of classes – later in the course)

� Packages

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 8

Classes that represent type abstractions

Primitive types:

byte

short

int

long

float

double

boolean

char

Defined
by the

Java
language

Abstract data types (ADT)

BigDecimal

Point

String

Date

InetAddress

Set

...

Fraction

Complex

Matrix

Point

Graph

Polynomial

...

Java
library

classes

User
defined

classes

Abstractions and classes:

The world around us consists of much more than Java’s 8 primitive types

To capture this richness, OOP languages are made to be extensible:
new data types are defined as needed, by software architects

In OOP, type abstractions are represented using:

� Classes

� Interfaces

This lecture

Later lectures

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 9

Needed: some mechanism for representing and manipulating fractions.
For example, given 1/2 + 1/3, we wish to compute and return 5/6.

A fraction can be characterized by two integers: numerator and denominator.

Things we want to do with fractions:

� Construction (how should we handle a zero denominator?)

� Addition

� Multiplication

� Division

� Displaying

� Check if two fractions are equal
(is 1/2 the same as 3/6?)

� Etc.

Design decision:
We will always represent fractions in their
reduced version.

Needed: some mechanism for representing and manipulating fractions.
For example, given 1/2 + 1/3, we wish to compute and return 5/6.

A fraction can be characterized by two integers: numerator and denominator.

Things we want to do with fractions:

� Construction (how should we handle a zero denominator?)

� Addition

� Multiplication

� Division

� Displaying

� Check if two fractions are equal
(is 1/2 the same as 3/6?)

� Etc.

Design decision:
We will always represent fractions in their
reduced version.

Requirements analysis (first approximation)

Fractions

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 10

Fraction abstraction
Fraction

class API

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 11

Fraction abstraction

Fraction

class API

API = functional abstraction

Architect’s view:

Express and structure the desired functionality in
a way that other people will find easy and natural
to use

Client view:

� How do I use this class in my programs?

� I don’t care how the class is implemented

Very important design principle:

Keep abstraction and implementation separate.

Fraction

class API

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 12

Using Fractions

server

public class FractionDemo {

public static void main (String args[]) {

Fraction a = new Fraction(1,2);

Fraction b = new Fraction(2,3);

System.out.println("a = " + a.toString());

System.out.println("b = " + b); // same as b.toString()

System.out.println("a + b = " + a.add(b));

System.out.println("a * b = " + a.multiply(b));

if (a.add(b).equals(b.add(a)))

System.out.println("addition seems to be commutative");

}

}

public class FractionDemo {

public static void main (String args[]) {

Fraction a = new Fraction(1,2);

Fraction b = new Fraction(2,3);

System.out.println("a = " + a.toString());

System.out.println("b = " + b); // same as b.toString()

System.out.println("a + b = " + a.add(b));

System.out.println("a * b = " + a.multiply(b));

if (a.add(b).equals(b.add(a)))

System.out.println("addition seems to be commutative");

}

}

client code

Output

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 13

Creating objects

...

Fraction a = new Fraction(1,2);

Fraction b = new Fraction(2,3);

...

int c = 5;

...

...

Fraction a = new Fraction(1,2);

Fraction b = new Fraction(2,3);

...

int c = 5;

...

ClassName varName = new ClassName(parameters);ClassName varName = new ClassName(parameters);

Object declaration syntax:

The parameter values serve to initialize the object’s state.

Memory

5

(1,2)

(2,3)

a

b

c

A constructor is a method:

It takes 0 or more parameters and returns a value

This value is the base address of the newly created object

a and b are called “object variables”
or “reference variables”

c is called “primitive variable”

Primitive variables store values

Object variables store base addresses
of objects.

server

client code

Behind the scene view of object variables:

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 14

Outline

� Static classes

� Math

� Arrays (later)

� Classes that represent types (examples)

� Fraction

� bankAccount

� Turtle

� String

� Classes that generate things (examples)

� Random

(More kinds of classes – later in the course)

� Packages

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 15

Bank account abstraction

A bank account is characterized by:
owner, balance, and a unique identifying number.

The account number is assigned automatically when the account is opened.

Things that we want to do with a bank account:

� Show its current balance

� Deposit money

� Withdraw money

� Transfer money to another account.

� Some more operations, to be defined later.

A bank account is characterized by:
owner, balance, and a unique identifying number.

The account number is assigned automatically when the account is opened.

Things that we want to do with a bank account:

� Show its current balance

� Deposit money

� Withdraw money

� Transfer money to another account.

� Some more operations, to be defined later.

Requirements analysis (first approximation)

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 16

BankAccount abstraction

BankAccount is not unlike a data type: it describes data and operations.

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 17

� The BankAccount class can be viewed as a template for creating and manipulating bank accounts

� Using it, we can create and manipulate as many BankAccount instances, or objects, as needed by
the application.

BankAccount class interface: (same)

Creating and manipulating objects

server

client code

public class BankAccountDemo {

public static void main (String args[]) {

BankAccount aliceAcc = new BankAccount("Alice", 0);

BankAccount bobAcc = new BankAccount("Bob", 100);

// ...

aliceAcc.deposit(900);

aliceAcc.transferTo(700, bobAcc);

System.out.println(aliceAcc);

System.out.println(bobAcc);

// ...

}

}

public class BankAccountDemo {

public static void main (String args[]) {

BankAccount aliceAcc = new BankAccount("Alice", 0);

BankAccount bobAcc = new BankAccount("Bob", 100);

// ...

aliceAcc.deposit(900);

aliceAcc.transferTo(700, bobAcc);

System.out.println(aliceAcc);

System.out.println(bobAcc);

// ...

}

}

Output:

Client code

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 18

Turtles

public class TurtleDrawingDemo {

public static void main(String[] args) {

Turtle leonardo = new Turtle();

leonardo.tailDown();

leonardo.moveForward(100);

leonardo.turnRight(60);

leonardo.moveForward(100);

}

}

public class TurtleDrawingDemo {

public static void main(String[] args) {

Turtle leonardo = new Turtle();

leonardo.tailDown();

leonardo.moveForward(100);

leonardo.turnRight(60);

leonardo.moveForward(100);

}

}

server

client code

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 19

Method invocations (aka “method calls”)

leonardo.hide(); // calling a void method with no parameters

leonardo.moveForward(100); // calling a void method with one parameter

x = Math.sqrt(area); // calling a static method that returns a value

System.out.println(bobAct.getBalance()); // two method calls

Turtle leonardo = new Turtle(); // calling a constructor

BankAccount bobAct = new BankAccount("Bob", 900) // calling a constructor

leonardo.hide(); // calling a void method with no parameters

leonardo.moveForward(100); // calling a void method with one parameter

x = Math.sqrt(area); // calling a static method that returns a value

System.out.println(bobAct.getBalance()); // two method calls

Turtle leonardo = new Turtle(); // calling a constructor

BankAccount bobAct = new BankAccount("Bob", 900) // calling a constructor

Code examples (meaningless …)

Methods may have parameters, or not

Methods may be invoked on objects, or not

Methods may return values, or not.

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 20

Parameters

leonardo.moveForward(100);

// ...

Int x = 50;

// ...

Leonardo.moveForward(x);

leonardo.moveForward(100);

// ...

Int x = 50;

// ...

Leonardo.moveForward(x);

client code

API

Formal

parameter

Actual

parameter

Actual

parameter

� formal parameters: stated in the
method’s API

� actual parameters: the values passed by
the method’s caller (aka “arguments”).

Two modes of parameter passing

� Call by value: the calling code passes the
value of the actual parameter

� Call by reference: the calling code
passes the variable itself, i.e. it’s address
in memory

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 21

Outline

� Static classes

� Math

� Arrays (later)

� Classes that represent types (examples)

� Fraction

� bankAccount

� Turtle

� String

� Classes that generate things (examples)

� Random

(More kinds of classes – later in the course)

� Packages

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 22

Needed: A mechanism for representing and manipulating strings of characters like "IDC",
"Los Angeles", "AATTTCCGTG“, etc.

Things we want to do with strings:

� Concatenation: city = "Los " + "Angeles" should yield the string "Los Angeles"

� Find where a given string starts in the string: city.indexOf("ng") should return 5

� Find what appears in a give location: city.charAt(5) should return ’n’

� Etc. – many more similar string manipulation operations

Needed: A mechanism for representing and manipulating strings of characters like "IDC",
"Los Angeles", "AATTTCCGTG“, etc.

Things we want to do with strings:

� Concatenation: city = "Los " + "Angeles" should yield the string "Los Angeles"

� Find where a given string starts in the string: city.indexOf("ng") should return 5

� Find what appears in a give location: city.charAt(5) should return ’n’

� Etc. – many more similar string manipulation operations

Requirements analysis (first approximation)

Strings

� String processing is prevalent: language parsing, DNA research, web protocols, …

� The Java solution: a built-in String class that provides many string processing
capabilities.

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 23

Strings

// Some (meaningless) examples of working with Strings

String name = new String("John Cleese");

String title = "Mr."; // Special object construction shortcut,
// unique to Strings

String salutation = title + name; // "Mr. John Cleese"

int year = 2012;

String line = "See you in London in " + year;

line = line + “, if I can afford it.“

System.out.println(line);

// Displays “See you in London in 2012, if I can afford it.”

// Some (meaningless) examples of working with Strings

String name = new String("John Cleese");

String title = "Mr."; // Special object construction shortcut,
// unique to Strings

String salutation = title + name; // "Mr. John Cleese"

int year = 2012;

String line = "See you in London in " + year;

line = line + “, if I can afford it.“

System.out.println(line);

// Displays “See you in London in 2012, if I can afford it.”

String = a sequence of characters, e.g. "Los Angeles"

In Java, character strings are represented as String objects

� Strings are
concatenated using
the + operator

� The + operator is
type-sensitive.

System.out.println("2 and 3 concatenated: " + 2 + 3);

System.out.println("2 and 3 added: " + (2 + 3));

System.out.println("2 and 3 concatenated: " + 2 + 3);

System.out.println("2 and 3 added: " + (2 + 3));

� Every string of
characters is
represented by an
object of the
String class

� 'b' and "b" are not
the same thing!

Output:

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 24

String methods (a small sample out of about 50 of them)

TCity:

0

e

1

l

2 3

A

4

v

5

i

6

v

7

String s, city = "Tel Aviv";

char c;

int n;

c = city.charAt(0); // 'T'

n = city.length(); // 8

n = city.indexOf('v') // 5

n = city.indexOf("el") // 4

s = city.subString(2,4); // "i A"

s = city.subString(3); // " Aviv"

s = city.toUpperCase(); // "TEL AVIV"

s = city.replace('v','g'); // "Tel Agig"

String s, city = "Tel Aviv";

char c;

int n;

c = city.charAt(0); // 'T'

n = city.length(); // 8

n = city.indexOf('v') // 5

n = city.indexOf("el") // 4

s = city.subString(2,4); // "i A"

s = city.subString(3); // " Aviv"

s = city.toUpperCase(); // "TEL AVIV"

s = city.replace('v','g'); // "Tel Agig"

Method overloading:

classes often feature

several versions of the

same method. The

difference is in the

number and type of the

method parameters.

Method overloading: Often used to apply the same or similar computation on different
types and numbers of the parameters.

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 25

The String class is immutable

String objects are immutable (unchangeable): once a String object has been created,

neither its value nor its length can be changed

String s = "Tel Aviv";

int n = s.length();

// checkpoint 1

s = s.toUpperCase();

// checkpoint 2

s = s.subString(5);

n = s.length();

// checkpoint 3

String s = "Tel Aviv";

int n = s.length();

// checkpoint 1

s = s.toUpperCase();

// checkpoint 2

s = s.subString(5);

n = s.length();

// checkpoint 3

8

"Tel Aviv"
s

n

Memory at checkpoint 1

De-referenced objects are

reclaimed by a behind-the-scene

process called garbage collector

8

"Tel Aviv"
s

n "TEL AVIV"

Memory at checkpoint 2

3

"Tel Aviv"

s

n "TEL AVIV"

Memory at checkpoint 3

"VIV"

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 26

Mutability

Mutable class: a class whose objects can be changed.

Examples: BankAccount, Turtle

Immutable class: a class whose objects – once constructed – never change.

Examples: Fraction, String

Why some classes are mutable and others are immutable?

The mutability of a class is determined by the class architect when building the class
interface; The class user has no choice – she uses what she’s got

Architect’s best practice:

� Immutable classes are safer and easier to manage

� As a general rule, a good architect strives to minimize access to her objects.

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 27

Outline

� Static classes

� Math

� Arrays (later)

� Classes that represent types (examples)

� Fraction

� bankAccount

� Turtle

� String

� Classes that generate things (examples)

� Random

(More kinds of classes – later in the course)

� Packages

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 28

Classes that generate things: Random

The Java class library includes a class named Random,
which is part of the package java.util

Random is used to generate a stream of pseudorandom numbers

More accurately: an instance of the Random class is used as a generator designed to
generate pseudorandom numbers

// Generates and prints two random numbers

public class RandomNumbersDemo {

public static void main (String[] args){

Random rndGenerator = new java.util.Random();

int num = rndGenerator.nextInt();

System.out.println ("A random int: " + num);

System.out.print(“Another one: “ + rndGenerator.nextInt());

}

}

// Generates and prints two random numbers

public class RandomNumbersDemo {

public static void main (String[] args){

Random rndGenerator = new java.util.Random();

int num = rndGenerator.nextInt();

System.out.println ("A random int: " + num);

System.out.print(“Another one: “ + rndGenerator.nextInt());

}

}

Example:

� Unlike the classes we saw before, the Random constructor is typically called only
once, resulting in a single object

� This object is then used to generate as many pseudorandom numbers as needed.

Random is an

example of a

“singleton class”

(usually)

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 29

Classes that generate things: Scanner

import java.util.Scanner;

public class ScanDemo {

public static void main (String args[]) {

String text = “ 1 2 red blue";

Scanner s = new Scanner(text);

System.out.println(s.next());

System.out.println(s.next());

System.out.println(s.next());

System.out.println(s.next());

s.close();

}

}

import java.util.Scanner;

public class ScanDemo {

public static void main (String args[]) {

String text = “ 1 2 red blue";

Scanner s = new Scanner(text);

System.out.println(s.next());

System.out.println(s.next());

System.out.println(s.next());

System.out.println(s.next());

s.close();

}

}

Example:

� A Scanner breaks its input into tokens using a delimiter pattern, which by default
matches whitespace

� In previous examples we used to initialize the Scanner on in, representing the
keyboard. As we see, this is just one possibility.

Output:

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 30

Outline

� Static classes

� Math

� Arrays (later)

� Classes that represent types (examples)

� Fraction

� bankAccount

� Turtle

� String

� Classes that generate things (examples)

� Random

(More kinds of classes – later in the course)

� Packages

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 31

Packages and the import command

import java.util.Random; // Gives access to Random’s services

public class RandomNumbersDemo {

public static void main (String[] args){

Random rndGenerator = new Random(); // rather than java.util.Random

// as before ...

}

}

import java.util.Random; // Gives access to Random’s services

public class RandomNumbersDemo {

public static void main (String[] args){

Random rndGenerator = new Random(); // rather than java.util.Random

// as before ...

}

}

Classes are often organized in class libraries, also called packages

import java.util.*; // Gives access to all the classes in this package

// typically used when you need to access 2 or more classes in the package.

import java.util.*; // Gives access to all the classes in this package

// typically used when you need to access 2 or more classes in the package.

Examples of widely used classes:

� java.lang.Math

� java.lang.String

� java.lang.System

The java.lang library is automatically imported into every class you write.

Using Classes and Objects, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 32

� A collection of ~3,000 classes, organized in ~200 packages, included in every

Java implementation

� Examples: java.lang, java.util, java.io, java.security, java.util.zip, java.net, . .

.

Java’s standard class library

ERROR: undefined

OFFENDING COMMAND: ��

STACK:

