Lectures 11-1, 11-2

Polymorphism

Introduction to Computer Science, Shimon Schocken slide 1

Polymorphism

Java is a "dynamic language":

B Run-time object types

® Virtual method invocation (aka “late binding” / "dynamic binding")

Implication: Polymorphism

B The behavior obtained by invoking a method obj.m() can take a different form
according to the run-time type of the object obj

B Therefore, objects belonging to different types can respond to a method call of
the same name, each according to a different type-specific implementation

B The calling program does not have to know the object type in advance;
The exact behavior is determined in run-time.

Introduction to Computer Science, Shimon Schocken slide 2

What are the problems to which polymorphism is the solution?

Quite often we have to represent a collection of objects of different types that have to

have a similar but different behavior. Examples:

Payroll application:

0 Different Worker types:
fixed salary, hourly-workers, volunteers, ...

Q Common behavior: we have to pay each Worker
according to his/her sub-type

Computer game.:

0 Different Fighter types: boxers, ninjas, shooters, ...

0 Common behavior:
every Fighter hits in some sub-type specific way

Paintbrush application:

0 Different Figure types: lines, rectangles, circles, ...

0 Common behavior: every figure draws itself in some
sub-type specific way

Enterprlse Payroll Systems

OPEN ouRcE SOFTWARE SOLUTION FOR ENTERPRISE PAYROLL NEEDE
M ith PHP Wy S

e Account Manager © Start Work © Swanrk o
Employee Payroll Slip
Name: John Smith
Pay Period: Dec 1, 2009 — Dec 31, 2009
Worker type: Hourly worker
Hourly Pay: $15.00
Hours Worked: 31
Total due: $465.00

[e
"mmm~>a>pa
/

Introduction to Computer Science, Shimon Schocken

slide 3

A polymorphic design approach

1. Design a base class, or an interface

Enterprlse Payroll Systems

PEN ouRcE SOFTWARE SOLUTION FOR ENTERPRISE PAYROLL NEEDE

2. Implement each sub-type as: Hi e o —
Employee Payroll SI|p

Name: John Smith

e A class that extends the base-class, or oy Period: Dec 1, 2009 - Deo 31, 2009
Worker type: Hourly worker
e A class that implements the interface Hourly Pay: $15.00

Hours Worked: 31
Total due: $465.00

3. Represent the common behavior as an abstract
method at the base-class or at the interface level

4. Have each sub-class implement this method in a
sub-type specific way

5. This design allows you to invoke the same method
on any object, knowing that the object will know
how "o handle itself".

B This is the essence of polymorphism.

[e
"mmm~>a>pa
/

Introduction to Computer Science, Shimon Schocken slide 4

Example: zoo

interface Animal {
String sound ();

class Animalbemo {
public static void main(String[] args) {
} ~__—® Animal[] zoo = new Animal[4];

class Dog implements Animal { Can store
String sound () { any sub-
return "woof"; type of
} Animal

}

class Pig implements Animal {
String sound () {
return "Oink";

zoo[0] = new PigQ);
zoo[1l] = new Pig(Q);
z0oo[2] = new Mouse();
zoo[3] = new Dog();

Polymorphic
method
invocation

for (Animal a : zoo){
System.out.printin(a.sound(Q));
if (a instanceof Mouse) {
Mouse m = (Mouse) a;

} System.out.println(m.complain());
}
class Mouse implements Animal { }
string sound O { } e L WINDOWS' system32h cmd.exe
return "Squeak";
.| u u
! . . D:vdemo>java AnimalDemo
String complain () {) Dink
return "Ouch!"; zoo is an array of Oink
} objects that implement Sgqueak
1 the Animal interface. Quch?

Loof

Introduction to Computer Science, Shimon Schocken

slide 5

Abstract class vs. interface

interface Animal {
String sound ();

}
Could be
class Dog implements Animal { r‘eplaced
public string sound O { with:

return "woof";

}

Best practice.

abstract class Animal {
abstract public String sound ();

}

class Dog extends Animal {
public String sound () {
return "woof";

}

B Use abstract classes when you want to declare data and implement some methods

at the base-class level

B Use interfaces whenever possible ... systems based on "interface inheritance” are
far more stable and easy to manage than systems based on "class inheritance”.

Introduction to Computer Science, Shimon Schocken

slide 6

Outline

Polymorphism

Examples of polymorphic solutions:

:> 0 Fighting army

Q Payroll

0 Paintbrush

Revisiting interfaces

Introduction to Computer Science, Shimon Schocken slide 7

A fighting army

e O WINDDWS' system32' cmd.exe

D:sdemo>java FightingArmy

Soldier B:
Soldier 1:

Soldier
Soldier
Soldier
Soldier
Soldier
Soldier
Soldier
Soldier

OGO =] O LA W L WD

trach?! trach! tracht
trach?! trach?

left punch?! right punch?t
trach?! trach?

left punch?! right punch?
trach?

left punch?

left punch?

left punch?! right punch?
trach?! trach! tracht

left punch?

Introduction to Computer Science, Shimon Schocken

slide 8

Kung Fu Fighter

public interface Fighter {
public void hit Q;

}

public class KungFuFighter implements Fighter {
pubTlic void hit O {
System.out.print("trach! ");

Introduction to Computer Science, Shimon Schocken slide 9

Boxer Fighter

public interface Fighter {
public void hit(Q);
}

// Represents a left- or right-handed boxer.
public class Boxer implements Fighter {
private boolean nextPunchLeft;

// Constructs either a left- or a right-handed Boxer
public Boxer (boolean leftHanded) {
nextPunchLeft = TeftHanded;

public void hit O {

System.out.print(nextPunchLeft ? "left punch! " : "right punch! ");
nextPunchLeft = !nextPunchLeft;

Introduction to Computer Science, Shimon Schocken slide 10

A fighting army

import java.util.Random;
public class FightingArmy {
public static void main(String[] args) {

// Creates and populates an army of 10 fighters
Fighter[] soldiers = new Fighter[10];
for (int i = 0; i < soldiers.length; i++)
if (Math.random() > 0.5)
soldiers[i] = new Boxer(true);
else

soldiers[i] new KungFuFighter();

// For each fighter, prints his number and

// generates a random series of at most 4 hits

for (int i = 0; i < soldiers.length; i++) {
System.out.print("soldier " + i + ": ");

int nHits = 1 + (new Random()).nextInt(3);
for (int k = 0; k < nHits ; k++)
soldiers[i].hit(Q;
System.out.printin();

[Polymorphic method invoca‘rion]

Terminology of some QO

hﬂﬂﬂﬂmm&mhﬂl—‘ﬁ
EE EE NN NN EN NN ER NN EHBN

languages

Method calls, e.g. x.mQ,
are sometimes referred to
as "sending a message mQ
to the object x"

Different objects respond to
the same message in
different ways, depending
on their type.

o L WINDOWS system32h cmd.exe

I: \demu},]aua FightingArmy

trach? trach?! tracht
trach? tracht

left punch? right punch?
trach?! trach?

left punch?! right punch?! left punch?
trach?

left punch?®

left punch?

left punch? right punch?
trach? trach?! tracht

Introduction to Computer Science, Shimon Schocken

slide 11

Outline

Polymorphism

Examples of polymorphic solutions:

Q Fighting army

:> Q Payroll

0 Paintbrush

Revisiting interfaces

Introduction to Computer Science, Shimon Schocken slide 12

Payroll application

"Our company employs various types of workers. We have regular employees, who are paid
a monthly salary, we have hourly workers, who we pay according to the hours they
actually worked, and we have volunteers, who don't get paid. We also have executives.
The executives are employees, meaning that they get a monthly salary. But, they may
also get a monthly bonus, because they set the payroll policy.

We need a payroll system that, each month, pays each worker his or her due.”

Enterprise Payroll Systems

AN OPEN SOURCE SOFTWARE SOLUTION FOR ENTERPRISE PAYROLL NEEDS
Meade with PHIP and MySQL v 1.0

o Account Manager © StartWork © Stop Work ©
Employee Payroll Slip
Name: John Smith
Pay Period: Dec 1, 2009 - Dec 31, 2009
Worker type: Hourly worker
Hourly Pay: $15.00
Hours Worked: 31
Total due: $465.00

Introduction to Computer Science, Shimon Schocken slide 13

Design considerations

Identifying entities:

Our company employees various types of workers. We have employees, who

are paid a monthly salary, we have hourly workers, who we pay according to
the hours they actually worked, and we have volunteers, who don't get paid.
We also have executives. The executives are employees, meaning that they
get a monthly salary. But, they may also get a monthly bonus, that reflects
their achievements during the month.

Observations:

Employee is-a worker
Hourly-worker is-a worker
Volunteer is-a worker

Executive is-an employee

Design decision:

It makes sense to put as much common data and functionality in a worker class,

and derive specific worker sub-classes from it.

Introduction to Computer Science, Shimon Schocken slide 14

Payroll class diagram

Worker (abstract)

- hame : String

+ toString() : String
+ pay : double (abstract)

/N

HourlyWorker Employee Volunteer

- hourlyRate : double

) - salary : double
- hoursWorked : int

+ addHours (int moreHours) : void + toString() : String + toString() : String
+ toString() : String + pay : double + pay : double

+ pay : double ﬁl

Executive
- bonus : double
+ setBonus (double bonus) : void

+ toString() : String
+ pay : double

Introduction to Computer Science, Shimon Schocken slide 15

Payroll class diagram

Worker (abstract)

- hame : String

+ toString() : String
+ pay : double (abstract)

VAN

HourlyWorker Employee Volunteer

- hourlyRate : double

) - salary : double
- hoursWorked : int

+ addHours (int moreHours) : void + toString() : String + toString() : String
+ toString() : String + pay : double + pay : double

+ pay : double A

Executive
- bonus : double
+ setBonus (double bonus) : void

+ toString() : String
+ pay : double

Introduction to Computer Science, Shimon Schocken slide 16

Sub-classing Worker: Volunteer

base-class

// Represents a generic worker.
abstract public class worker {

// Represents a volunteer worker.
public class volunteer extends worker {

// Worker’s data:
private String name;
// More worker’s data comes here

// Constructs a new volunteer.
public volunteer (String name) {
super (name);

// Constructs a worker
public worker (String name) {

_ public String tostring O {
this.name = name;

return super.tostring() +
"\n" + "volunteer, no payment";

}

public String tostring O {

return "Name: + nhame; .
// Volunteers receive no payment.

public double pay OO {
return 0O;

}

// Pays this worker.
public abstract double pay Q;

Introduction to Computer Science, Shimon Schocken slide 17

Payroll class diagram

Worker (abstract)

- hame : String

+ toString() : String
+ pay : double (abstract)

VAN

HourlyWorker Employee Volunteer

- hourlyRate : double

) - salary : double
- hoursWorked : int

+ addHours (int moreHours) : void + toString() : String + toString() : String
+ toString() : String + pay : double + pay : double

+ pay : double A

Executive
- bonus : double
+ setBonus (double bonus) : void

+ toString() : String
+ pay : double

Introduction to Computer Science, Shimon Schocken slide 18

Sub-classing Worker: HourlyWorker

base-class

// Represents a generic worker.
abstract public class worker {

// Worker’s data:
private String name;
// More worker’s data comes here

// Constructs a worker
public worker (String name) {
this.name = name;

}

public String tostring O {

return "Name: " + name;

}

// Pays this worker.
public abstract double pay Q;

Introduction to Computer Science, Shimon Schocken

public class HourlywWorker extends Worker {

private double hourlyRate;

private int hoursworked;

// Constructs a new hourly worker

public Hourlyworker (String name,double hourlyRate) -

super(name) ;
this.hourlyRate = hourlyRate;
this.hoursworked = O0;

}

public void addHours (int hours) {
hoursworked += hours;
}
public String tostring O {
return super.toString() +
"\n" + "Current hours:
"\n" + "Hourly rate: "

+ hourlyRate;

public double pay O {
double payment = hoursworked * hourlyRate;
hoursworked = 0;
return payment;

+ hoursworked +

Payroll class diagram

Worker (abstract)

- hame : String

+ toString() : String
+ pay : double (abstract)

VAN

HourlyWorker Employee Volunteer

- hourlyRate : double

) - salary : double
- hoursWorked : int

+ addHours (int moreHours) : void + toString() : String + toString() : String
+ toString() : String + pay : double + pay : double

+ pay : double A

Executive
- bonus : double
+ setBonus (double bonus) : void

+ toString() : String
+ pay : double

Introduction to Computer Science, Shimon Schocken slide 20

Sub-classing Worker: Employee

base-class

// Represents a generic worker.
abstract public class worker {

// Worker’s data:
private String name;
// More worker’s data comes here

// Constructs a worker
public worker (String name) {
this.name = name;

}

public String tostring O {

return "Name: + nhame;

}

// Pays this worker.
public abstract double pay Q;

// Represents an employee worker.
public class Employee extends worker {

private double salary;

// Constructs an employee

public Employee (String name, double salary) {
super(name) ;
this.salary = salary;

public String tostring O {
return super.toString() +
"\n" + "Monthly salary:

+ salary;

// Monthly payment of this employee.
public double pay (O {
return salary;

Introduction to Computer Science, Shimon Schocken

slide 21

Payroll class diagram

Worker (abstract)

- hame : String

+ toString() : String
+ pay : double (abstract)

VAN

HourlyWorker Employee Volunteer

- hourlyRate : double

) - salary : double
- hoursWorked : int

+ addHours (int moreHours) : void + toString() : String + toString() : String
+ toString() : String + pay : double + pay : double

+ pay : double A

Executive
- bonus : double
+ setBonus (double bonus) : void

+ toString() : String
+ pay : double

Introduction to Computer Science, Shimon Schocken slide 22

Sub-classing Employee: Executive

base-class

public class Employee

}

extends worker {
private double salary;

// Constructs an employee
public Employee (String name,
double salary) {
super (name);
this.salary = salary;

}

public String tostring () {
return super.tostring() +
"\n"+ "Monthly salary: “ +
salary;

// Monthly payment of this employee.

public double pay () {
return salary;

}

public class Executive extends Employee {

private double bonus;

// Cconstructs a new Executive.

public Executive (String name, double salary) {
super(name, salary);
bonus = 0;

}

// Awards a bonus to this executive.

public void setBonus (double bonus) {
this.bonus = bonus;

}

public String tostring O {
return super.toString() +
"\n" + "Bonus: " + bonus;

// Monthly payment of this executive
public double pay O {
double payment = super.pay() + bonus;
bonus = 0;

return payment;

Introduction to Computer Science, Shimon Schocken

slide 23

Payroll class diagram (complete)

PayRollIDemo

+ main (args : String[]) : void
:

A4 Worker (abstract)
WorkForce

- hame : String
+ workers : Worker(] %

+ generateDate() : void + toString() : String
: + pay : double (abstract
+ generatePayments() : void pay : double (abstract)

JAN
|

HourlyWorker Employee Volunteer

- hourlyRate : double
- hoursWorked : int

- salary : double

+ addHours (int moreHours) : void + toString() : String + toString() : String
+ toString() : String + pay : double + pay : double

+ pay : double A

Executive
- bonus : double
+ setBonus (double bonus) : void

+ toString() : String
+ pay : double

Introduction to Computer Science, Shimon Schocken slide 24

WorkForce: a collection of Worker objects

// Represents workers and their payments
public class workForce {

private worker[] workers;

public workForce () {
// Constructs a demo array of 6 workers. a)
workers = new worker[6]; The construction of different
workers[0] = new Executive("Jane", 7500); workers depends on their
workers[1] = new Employee ("carla", 3000); types: different sub-types
workers[2] = new Employee ("woody", 2500); have different constructors.
workers[3] = new Hourlyworker ("Diane", 10); \;, -/
workers[4] = new Volunteer ("Norm");
workers[5] = new Volunteer ("Cliff");

}

// Generate some demo work data
public void generateData () {
((Executive) workers[0]).setBonus(500);
((Hourlyworker) workers[3]).addHours(40);
((Hourlyworker) workers[3]).addHours(10);

}

// Pays all the workers
public void generatePayments () // Next slide.

}

Introduction to Computer Science, Shimon Schocken slide 25

Paying the workers, polymorphically

public class PayRoll1Demo {
public static void main (String[] args) {

workForce workForce = new WorkForce();
// Code continues from previous slide workForce.generatebata();
workForce.generatePayments();

// Pays all the workers }

public void generatepPayments () {

for (int j = 0; j < workers.length; j++) {

// Print the worker's data cv L0 WINDDYWS' system 32 cmd.exe

System.out.println (workers[j]); D:~demo~payroll>java PayRollDemo
Mame: Jane
// Compute and print the monthly payment EEEEE}HEEEIEPH: 7500.0
System.out.printin("Pay due: “ + workers[j].pay()); Pay due: 8000.0
System.out.printin(); Hﬂﬂiﬂlﬁaiiiapy= 3000.0
} FPay due: 3068.8

Mame: Woody
1}

Monthly salary: 2588.8
Pay due:= 2588.08

Mame: Diane
Current hours: SH
Hourly rate: 18.8

Polymorphic method Pay due: 500.8

invocation Name: Norm
Uolunteer,. no pavment
Pay due: B.8

Mame: Cliff
Uolunteer,. no payment
Pay due: 8.8

Introduction to Computer Science, Shimon Schocken slide 26

Outline

Polymorphism

Examples of polymorphic solutions:
Q Fighting army
Q Payroll

I:> O Paintbrush

Revisiting interfaces

Introduction to Computer Science, Shimon Schocken slide 27

Heterogeneous collections

A heterogeneous collection is a class that can
contain objects of arbitrary types

Popular heterogeneous collection classes in Java:
e Jjava.util.ArrayList

e Java.util.vector

Pr‘oper"ries of an ArrayList / vector:

B Holds an ordered collection of objects
(of any type)

B A growable, flexible, and untyped version of an
array

B Objects can be added using an index, or not

B The collection size grows and shrinks as needed.

Animal[] zoo = new Animal[4];
zoo[0] = new Pig(Q);

zoo[1] = new PigQ);
zoo[2] = new Mouse();
zoo[3] = new Dog(Q);

Vector zoo = new Vector();
zoo.addETement(new Pig());
zoo.addElement(new Pig());
zoo.addETement(new Mouse());
zoo.addETement(new Dog());
zoo.addElement(17);

zoo.remove(2);

Introduction to Computer Science, Shimon Schocken

zoo.addETement(“It’s raining”);

.insertElementAt(new Dog(),2)

Heterogeneous collections are not type safe

200

Z00.
Z00.
Z00.
Z00.

Z00.

Vector zoo = new Vector();

.addelement(new Pig());
addelement(new Pig(Q));
addeTement(new Mouse());
addElement(new Dog());
addElement(17);
addelement(“It’s raining”);

Object obj = zoo.elementAt(j);
if (obj instanceof Animal)
Animal a = (Animal) obj;
// Now a can be used as an animal

vector (like other heterogeneous
collection classes) is type unsafe

Before using an item taken from a vector,
you must check its type and then cast
accordingly.

Introduction to Computer Science, Shimon Schocken

slide 29

Typed collections

Java allows to create typed collections, using the syntax

CollectionName < TypeName >

Z00

Z00

Z00.

Z00.

Z00.

Z00.

Vector<Animal> zoo = new Vector();

addeElement(new Pig());

addelement(new Pig());

.addElement(new Mouse());

.addElement(new Dog());

addeElement(17); // Will not compile

addelement(“It’s raining”); // Will not compile

// With a typed collection, there is no need to check and cast:

Animal a = zoo.elementAt(j);

Introduction to Computer Science, Shimon Schocken

slide 30

Paintbrush application

The task: Build a program that allows users to
create and manage simple pictures. Each
picture is made of generic geometrical figures
like rectangle, circle, triangle, etc.

The system should allow:

O Creating a new picture
Adding geometric shapes to the picture
Deleting figures

Moving figures

{§ untitled - Paint

Resizing figures
Etc.

o O O O O

It should be possible to take the picture and

QO Storeitina file

Q Ship it to another computer

0 Display it on any given screen.

Introduction to Computer Science, Shimon Schocken slide 31

Picture API

public class Picture {

File Edt Wew Image Colors Help

public Picture () e

public void addFigure (Figure figure) ﬁg

public void deleteFigure (Figure figure) ?’Ef? \

public void draw () // the entire picture g& \ \
public void erase () // the entire picture =

// Other Picture-Tevel methods. -

The PaintBrush application GUL:

We assume that the user is using some GUI to draw shapes on the screen

When the user is done drawing a shape, we add this shape to this picture.

Introduction to Computer Science, Shimon Schocken slide 32

Figure API

public abstract class Figure {
public Color getLineColor ()
public void setLineColor (Color c)

public abstract void draw ()
// More Figure methods

public void draw ()

public void draw ()

public Figure (int x, int y, int width, int height)

(Fi gure is an abstract class:\

It provides a template for
deriving sub-classes that
represent boxed geometric

public class Triangle extends Figure {

public class Circle extends Figure {

\\§hapes

J

// Constructs an equilateral triangle of a given size

public Triangle (int x, int y, double size)

// Constructs a circle of a given radius

public Circle (int x, int y, double radius)

// One such class for every generic figure.

Rectangle

extends
Figure

Triangle

extends
Figure

Circle

extends
Figure

Introduction to Computer Science, Shimon Schocken

slide 33

Client code example: drawing a stick house

public class PaintBrushDemo {

public static void main(String[] args) { The appr'oach:

Picture picture = new Picture(); A drawing is implemented

as a picture, to which we
add figures like rectangle,
Triangle, etc.

// Build wall, door, and roof

int x = 100; int y = 200;

Rectangle wall = new Rectangle(x, y, 150, 200);

Rectangle door = new Rectangle(x + 75, y + 100, 40, 100);

Triangle roof = new Triangle(x, y, 150); T
roof.setLineColor(Color.red);
picture.addFigure(wall); (0,0)
picture.addFigure(door);
picture.addFigure(roof); X - 100
y = 200
// Build a stick fence a
X =x + 200; y =y + 120; X = x+200
for (int i = 0; i < 10; i++) { y = y+120
picture.addFigure(new Rectangle(x, y, 10, 80)); ;7 o
X += 20; |
} [N N N N Ny Ny N NN Ny B
// Build the 2 horizontal beams (omitted)
picture.draw(); "
} An interactive version of this program would re-
} draw the picture each time a new figure is built.

Introgucton 1o 8omputer guence, Shimon schocken slide 34

Behind the scene: class Figure

public abstract class Figure { X,y width

// Top-left corner of this figure’s box i Figure iheight
protected int x,y; !

// Dimensions of this figure’s box An abstract class,

protected int width, height; Provides a template for

deriving sub-classes that Rectangle
// Default color of this figure’s outline | represent boxed extends
private Color lineColor = Color.black; geometrical shapes Figure

public Figure (int x, int y, int width, int height) {
this.x = x;
this.y = vy;
this.width = width;
this.height = height;

Triangle
extends
Figure

public Color getLineColor () { return lineColor; }

public void setLineColor(Color c) { lineColor = c; })
circle

]) extends
// More Figure methods (next slide) Figure

Introduction to Computer Science, Shimon Schocken slide 35

Behind the scene: class Figure

public abstract class Figure { X,y width
rotected int x, y, width, height; i i
p y g | Figure i height
// Continued from previous slide ... e i
// Checks if (x,y) 1is within this figure's box Rectangle
public boolean contains (int x, int y) { extends
return x >= this.x & x <= this.x + width && Figure

y >= this.y & y <= this.y + height;

// Draws this figure
public abstract void draw Q; Triangle
extends

Figure

// More Figure methods

B rigure is the abstract base class of all the Figure sub-types circle

extends
B Tt defines the common data and behavior that each boxed Figure

geometric figure must have.

Introduction to Computer Science, Shimon Schocken slide 36

Sub-classing Figure: class Rectangle

public abstract class Figure {

protected int x, y, width, height;
private Color lineColor = Color.black;

public Figure (int x, int vy,
int width, int height)

public Color getLineColor ()
public void setLineColor (Color c)
public boolean contains (int x, int y)

public abstract void draw Q;

// Other Figure methods

import turtle.Turtle;

public class Rectangle extends Figure {

public Rectangle (int x, int vy,
int width, int height) {
super(x, y, width, height);

public void draw () {

Turtle painter = new Turtle();
painter.setLineColor(getLineColor());
painter.setLocation(x, y);
painter.tailbown();
painter.moveForward(width) ;
painter.turnRight(90);
painter.moveForward(height);
painter.turnRight(90);
painter.moveForward(width) ;
painter.turnRight(90);
painter.moveForward(Cheight);
painter.hide();

Introduction to Computer Science, Shimon Schocken

slide 37

Sub-classing Figure: class Triangle

public abstract class Figure {

protected int x, y, width, height;
private Color lineColor = Color.black;

public Figure (int x, int vy,
int width, int height)

public Color getLineColor ()

public void setLineColor (Color c)
public boolean contains (int x, int y)
public abstract void draw Q;

// Other Figure methods

import turtle.Turtle;

public class Triangle extends Figure {

// Constructs an equilateral triangle whose

// top-left corner 1is x,y

public Triangle (int x, int y, int size) {
super(x,y,size, (int)Math.sqrt(3/4)*size);

}

public void draw () {

Turtle painter = new Turtle();
painter.setLineColor(getLineColor());
painter.setLocation(x + width, y + height);
painter.tailbown();
painter.turnLeft(30);
painter.moveForward(width);
painter.turnLeft(120);
painter.moveForward(width) ;
painter.turnLeft(120);
painter.moveForward(width) ;
painter.hide();

Introduction to Computer Science, Shimon Schocken

slide 38

class Picture

import java.util.vector; PaintBrush clients create pictures by:
public class Picture { O Constructing a picture
private Vector figures; Q Constructing various figures

oublic Picture O O Adding the figures to the picture

this.figures = new vector();

. Thus, it makes sense to implement picture

as a heterogeneous collection.

public void addFigure(Figure figure) {
figures.addelement(figure);

}
public void draw () { . . .
for (int i = 0; i < figures.size(); i++) { Note the casting - we are dealing with
((Figure) figures.elementAt(i)).draw(); a type unsafe collection (vector)

Polymorphic
method invocation

Introduction to Computer Science, Shimon Schocken slide 39

The PaintBrush application: class diagram

PaintBrushDemo

+ main()

Figure (abstract)

#x,y:int
width , height : int

- figures : Vector < > - lineColor : Color

+ addFigure(Figure figure) : void + draw : void (abstract)
+ draw : void + contains(int x, inty) : boolean

Picture

Rectangle Triangle Circle

+ draw() + draw() + draw()

A A A
: : :
________________________________ S U |

Introduction to Computer Science, Shimon Schocken slide 40

Outline

Polymorphism

Examples of polymorphic solutions:
Q Fighting army
Q Payroll

0 Paintbrush

E> Revisiting interfaces

Introduction to Computer Science, Shimon Schocken slide 41

Using interfaces to create generic solutions

Example of a class that implements comparable:

The Java class library features a

comparable interface. public class Date implements Comparable {

. private int day, month, year;
In this example we create a

comparable interface of our own: public Date (int day, int month, int year) {

this.day = day;
this.month = month;
public interface Comparable { this.year = year;

boolean gt (Comparable other); ¥

boolean 1t (Comparable other);])]
(Comp) public String tostring () {

return day + "/" + month + "/" + year;

boolean equals (Comparable other);

public boolean gt (Comparable other) {
Date d = (Date) other;
if (year != d.year) return year > d.year;
if (month != d.month) return month > d.month;
return day > d.day;

// 1t and equals implementations are similar

Introduction to Computer Science, Shimon Schocken slide 42

i (
Generic sorter Instead of sorting an array of a specific

7 data type, we are willing to sort any
array of comparable objects

public class Sorter {

public static void selectionSort (Comparable[] a) {
for (int j = 0; j < a.length-1; j++) {
int min = j;

for (int k = j+1; k < a.length; k++) { (lnstead of USing > we Use t,

if (a[min].gt(al[k]l)) @ since we know that comparable
min = k; Lobjects must implement it.

if (min = j) { I
Comparable temp = a[min];
afmin] = a[jl; When declaring a new variable that

_— _ holds a comparable value, we cast it as

aljl = temp; Ccomparable

Implication: sorter.selectionsort can now be used to sort objects that come from any
class that implements comparable

Introduction to Computer Science, Shimon Schocken slide 43

Generic sorter

public class DateSortDemo {
public static void main (String[] args) {
Date[] dates = new Date[4];
dates[0] = new Date(17, 2, 2009);

dates[1l] = new Date(l, 4, 1954);
dates[2] = new Date(20, 2, 2009);
dates[3] = new Date(3, 11, 1967);

Sorter.selectionSort(dates);

for (Date d : dates)
System.out.println(dates[j]);

e O3 WINDODWS system 32 cmd.exe

D:sdemo*java DateSortDemo
141954
3111967
17722009
28220079

Introduction to Computer Science, Shimon Schocken slide 44

