Lecture 10-2

Inheritance

Introduction to Computer Science, Shimon Schocken slide 1

Inheritance lectures outline

Lecture 10-1:

Interfaces
Motivation

Examples

Inheritance
Motivation

Examples

Sub-classing
Constructors
Methods

Lecture 10-2:

Narrowing / widening

Class Object

toString
Equals

HashCode

Run-time types

Virtual methods
Visibility
The final modifier

The comparable interface

Introduction to Computer Science, Shimon Schocken

slide 2

A typical inheritance hierarchy

base-class
// Represents a point on a grid.

public class Point {

// Represents a colored point on a grid.
// The coordinates of this point public class ColoredPoint extends Point {
private int x, y;

private Color color;
// Constructs a point.

pubTlic Point(int x, int y) { // Constructs a new colored point
this.x = x; public ColoredPoint(int x, int vy,
this.y = vy; Color color) {
} super(x,y);

this.color = color;

// Computes the distance from another point }
public double distanceFrom (Point p) { }
int dx = X - p.X;
int dy =y - p.y; enum color {red, blue, green, yellow};

return Math.sqrt(dx * dx + dy * dy);
}

pubTlic String tostring() {

r'e'tur'n Il(ll + X + , + y + Il)ll;
) Point p = new Point(50,100);

ColoredpPoint cp = new ColoredPoint(10,20,Color.red);
// prints (10,20)

System.out.println(cp);

Introduction to Computer Science, Shimon Schocken slide 3

The instanceof operator

Problem: How to tell if some object variable, say obj, points to an object of type SomecClass?

Solution: Check if obj instanceof SomecClass

// Recall that ColoredPoint extends Point

Point p = new Point(50,100);

ColoredPoint cp = new ColoredPoint(10,20,Color.red); Point
String s = new String("bla");

System.out.printin (p instanceof Point); // true ‘
System.out.printin (cp instanceof ColoredPoint); // true ColoredPoint
System.out.printin (cp instanceof Point); // true

System.out.printin (p instanceof ColoredPoint); // false

System.out.printin (s instanceof Point); // compilation error

When using obj instanceof SomecClass,
obj must be "related” to someclass.

If anobject is an instance of some class, it is also an instance of it's base-class.

Introduction to Computer Science, Shimon Schocken slide 4

Narrowing / widening

Sometimes we want to "widen-up” an object and treat it like an instance of its base class

In other times we want to "narrow down" an object and treat it like an instance of one of
its subclasses

Point p = new Point(10,20);

Point cp = new ColoredPoint(2,3,Color.red); Point

p = (Point) cp; // cp is widened up (explicitly) ‘

p = Cp; // cp is widened up (implicitly) ColoredPoint
cp = (ColoredpPoint) p ; // p is narrowed down

cp = new Point(10,20);

In Java:

e Widening up can be done either explicitly or implicitly

e Narrowing down requires explicit casting.

Introduction to Computer Science, Shimon Schocken slide 5

Implicit widening by parameter passing

// A point on a grid

public class Point {
private int x, y;

// Represents a colored point on a grid.
public class ColoredPoint extends Point {

o . _ rivate Color color;
// Computes the distance from another point .

public double distanceFrom (Point p) { 1 o
int dx = X - p.X;
intdy =y - p.y;
return Math.sqrt(dx * dx + dy * dy);

enum Color {red, blue, green, yellow};

}

} Point p = new Point(2,3);
é coloredpPoint cp = new ColoredpPoint(5,6,Color.red);

double d = p.distanceFrom(cp);

The method expects to get a Point parameter; Instead, it gets a coloredPoint argument (cp).

That's OK - cp is widened up by the type of the formal parameter.

The inheritance principle: a subclass object can be used wherever an object
from its base-class is expected.

Introduction to Computer Science, Shimon Schocken slide 6

Method calling up the inheritance hierarchy

When a method is called on some object:

0 If the compiler finds a matching method declaration
in the object’s class, it uses it

O Otherwise it searches the method in the immediate
parent class

0 All the way up to java.lang.object

(An example is shown in slide 3, when we invoked
tostring on a coloredroint object that has no tostring
implementation)

ColoredpPoint

Introduction to Computer Science, Shimon Schocken

slide 7

Outline

Lecture 10-1:

Interfaces
Motivation

Examples

Inheritance
Motivation

Examples

Sub-classing
Constructors
Methods

Lecture 10-2:

Narrowing / widening

Class Object

toString
Equals

HashCode

Run-time types

Virtual methods
Visibility
The final modifier

The comparable interface

Introduction to Computer Science, Shimon Schocken

slide 8

Cl ass bj ect : the parent class of all Java classes

=)
=)
=)

=

public class Ohject

lass Chiect 18 the root of the class herarchy. Every class has object as a superclass.
Al obiects, mchiding arravs, implement the methods of this class.

Method Summary

protected
Object

clone ()
Creates and returns a copy of this object.

boolean

egquals (Chiject okbi)
Indicates whether some other object 15 "ecual to" thiz one.

protected
wolid

finalize ()
Called by the gartbage collector on an object when garbage
collection determines that there are no more references to the object.

Class

getClass ()

Eeturns the runtime class of an obiject.

int

hazshCode ()
Eeturns a hash code value for the object.

woid

notify ()

WWales up a single thread that 15 watting on this obiject's monttor,

wvoid

notifyhll ()
“Wakes up all threads that are waiting on this object's motitor.

String

toString ()

Eeturns a string representation of the object.

(partial APT)) : Discussed in this lecture

Class object is the root of the
class hierarchy

Every Java class implicitly
extends object

Thus, the object methods are
inherited by all Java classes

Class designers are expected
to override some of these
base methods.

Introduction to Computer Science, Shimon Schocken

slide 9

The tostri ng method

toSirin
2 (java.lang.object APT)

public 3tring toStringi)

Eeturns a string representation of the object. In general, the toString method returns a string
that "textually represents” this object. The result should be a concise but iformative representation
that 15 easy for a person to read. It iz recommended that all subclasses overnide this method.

The tostring method for class Ohject returns a sting consisting of the name of the class of
which the object 15 an instance, the at-sign character "'/ and the unsisned hesaderimal
representation of the hash code of the object.

When you override a method, you are expected to follow some rules

If the base-class is documented properly, these rules should be stated in its APT
(as seen above).

Introduction to Computer Science, Shimon Schocken slide 10

Overriding t oSt ri ng

base-class B Note the difference between method

// Represents a point on a grid. overriding and overloading
public class Point {

// The coordinates of the point
private int x, vy;

// Represents a colored point on a grid.

1 c] public class ColoredPoint extends Point {
onstructs a point

public Point (int x, int y) {
this.x = Xx;
this.y = vy;

private Color color;

// Constructs a new colored point
e e | public ColoredPoint (int x, int y, Color color) {
super(x,y);

public String tostring (O {]
this.color = color;

return "(" + x + "," +y + ") "

public String tostring (O {
return super.toString() +
+ color.toString(Q);

Overridden methods can be invoked }

using the syntax super.methodName
enum Color {red, blue, green, yellow};

Introduction to Computer Science, Shimon Schocken slide 11

The equal s method

equals

pubblic boolean eguals (Ohject obj)

The equals method for class object implements the most discoiminating possible equivalence
relation on objects; that 1z, for any non-null reference values x and v, this method returns crue of
atid only if x and v refer to the same object (x == ¥ has the value crue).

B C(Class designers normally override equals(), to reflect an equality relationship that
makes sense given this class semantics

B TImportant: if you override equals() you must also override hashcode ()

(more about hashcode later).

Introduction to Computer Science, Shimon Schocken slide 12

The equal s method

public class Point {
// The coordinates of the point
private int x, y;

public boolean equals (Point other) {
if (other == this) return true;
if (other == null) return false;
return (x == other.x & y == other.y);

}
Point pl = new Point(10,20);
Point p2 = new Point(10,20);
System.out.printin(pl == p2); // false

System.out.printin(pl.equals(p2)); // ?

// If equals was not overridden by Point, we’ll get false.
// If it was overridden by Point properly, we’ll get true.

Introduction to Computer Science, Shimon Schocken slide 13

Overriding the equal s method

base class

public class Point {
// The coordinates of the point

~

private int x, y;)
A more general version of

public boolean equals (0Object obj) { g equals, designed to

if (obj == this) return true; accommodate equals calls from

subclasses
_ J

if (obj == null) return false;
if (!(obj instanceof Point)) return false;
Point other = (Point) obj;

return (x == other.x & y == other.y);

public class ColoredpPoint extends Point {
} private Color color;

public boolean equals (ColoredpPoint other) {

if (this == other) return true;

if (super.equals(other) && (color == other.color)) return true;
return false;

Introduction to Computer Science, Shimon Schocken slide 14

Overriding the equal s method, final version

base class

public class Point {
// The coordinates of the point

private int x, y; These equals methods were generated

e automatically by Eclipse.
public boolean equals (Object obj) {

if (this == obj) return true;
if (obj == null) return false;
if (!(obj instanceof Point)) return false;
Point other = (Point) obj;

return (x == other.x & y == othe

public class ColoredpPoint extends Point {

¥ private Color color;
} public boolean equals (Object obj) {
if (this == obj) return true;
(Likewise designed fo \ if (!super.equals(obj)) return false;

accommodate ~apalls calls if (!(obj instanceof ColoredPoint)) return false;

from subclasses of ColoredpPoint other = (ColoredpPoint) obj;

coloredproint. if and when if (color != other.color) return false;

such subclasses will be

Qlef ined.)

return true;

Introduction to Computer Science, Shimon Schocken slide 15

Overriding hashCode

public class Point { Every Java object has a numeric unique identifier,
// The coordinates of the point called “hash code"

private int x, y;
The object class has a hashcode method that

returns this number (that's the number that

public int hashCode (O {
the standard tostring method returns)

final int prime = 31;

int result = 1; Overriding implementations of hashcode are
result = prime * result + x; expected to create an implementation that
result = prime * result + y; ensures that objl.hashcode() = obj2.hashcode()
return result; if and only if obj1.equals(obj2)

This can be done by implementing a certain
function on the object’s field values

The particular hashcode method shown on the left
was generated automatically by Eclipse.

Introduction to Computer Science, Shimon Schocken slide 16

Overriding rules

A subclass can override methods from its base-class

The base-class API should state what is expected of overriding implementations of
its methods

The method signatures (name, number and type of the parameters) of the
overriding method and the overridden method must be identical

The visibility modifier of the overriding method can allow more access than the
overridden method, but not less. For example, a protected method in the base-class
can be made public but not private.

The overriding method can have a different throws clause as long as it doesn't
declare any types not declared by the throws clause in the overridden method.

Introduction to Computer Science, Shimon Schocken slide 17

Outline

Lecture 10-1:

Interfaces
Motivation

Examples

Inheritance
Motivation

Examples

Sub-classing
Constructors
Methods

Lecture 10-2:

Narrowing / widening

Class Object

toString
Equals

HashCode

Run-time types

Virtual methods
Visibility
The final modifier

The comparable interface

Introduction to Computer Science, Shimon Schocken

slide 18

Run-time type

Consider the following code:

Object
Point p; ‘
ColoredpPoint cp = new ColoredPoint(10, 20, Color.green);
Point
p = Cp; ‘
Terminology: We say that ... ColoredPoint

The compile-time type of p is point

The run-time type of p is coloredroint

Run-time type

B The run-time type is always some subclass of the compile-time type

B The same object can have different run-time types in different program runs.

Introduction to Computer Science, Shimon Schocken slide 19

Virtual method calling

B TInanobject-oriented language,
(non-static) methods are always
invoked on some object

B TIf the object has been narrowed
or widened, which method
implementation should be used?

Virtual method calling:
The method to be invoked is
determined by the run-time type
of the object (not by its compile-
time type)

In Java, all methods invocations are
virtual (unlike C++).

base-class

public class Animal {
public String eats() { return "food"; }

}

public class Cow extends Animal {
public String eats() { return '"grass"; }

}

// Narrowing demo

Animal a;

Cow ¢ = new Cow();

a = c;
System.out.printin(a.eats());

// prints “grass”

Introduction to Computer Science, Shimon Schocken

slide 20

Outline

Lecture 10-1:

Interfaces
Motivation

Examples

Inheritance
Motivation

Examples

Sub-classing
Constructors
Methods

Lecture 10-2:

Narrowing / widening

Class Object

toString
Equals

HashCode

Run-time types

Virtual methods
Visibility
The final modifier

The comparable interface

Introduction to Computer Science, Shimon Schocken

slide 21

Visibility modifiers

The visibility modifier of a member determines which other classes can access the member.

There are four possibilities:

private : Accessible to this class only
public: Accessible to any class
protected : (1) Accessible to any class in the same package as this class

(2) Accessible to any subclass of this class

None (default): Package-private: accessible to any class in the same package as this class

Usage

B Use protected o expose a member to
subclasses and hide it from the rest
of the world

B Avoid defining foo many protected variables:
it hurts encapsulation

Access Levels

Modifier |Class Package |Subclass [World
public Nl T T T
protected [Y b T I
Ho modifier |1 T I I
private b Iy I I

B Aprotected member is considered part of the class interface and should be documented

in the class API.

Introduction to Computer Science, Shimon Schocken

slide 22

The final modifier

The fi nal modifier can be applied to classes, methods and variables;
in each case it has a different meaning:

B final className indicates that the class cannot have subclasses
B final methodName indicates that the method cannot be overridden

m final variablename indicates that the variable can be initialized only once

Declaring a class final can improve performance, since Java does not have to maintain
the run-time types of its objects.

Case in point: the string class is declared final.

Introduction to Computer Science, Shimon Schocken slide 23

Example of a final method

Class object features a getclass method that returns the run-time type of any given
object. For example:

Point cp = new ColoredPoint(2,3,Color.red);
System.out.printin(cp.getClass()); // prints "class ColoredPoint*

cp = new Point(10,20);

System.out.printin(cp.getClass()); // prints "class Point"

Many classes and programmers expect getclass to work that way.
Therefore, letting other classes override it makes no sense.

To prevent overriding, this method is declared (in class object) as final.

Introduction to Computer Science, Shimon Schocken slide 24

Outline

Lecture 10-1: Lecture 10-2:
Interfaces Narrowing / widening
Motivation
Class Object
Examples .
toString
) Equals
Inheritance
HashCode
Motivation
Examples Run'Time Types
Virtual methods
Sub-classing
Constructors Visibility
Methods

The final modifier

|::> The comparable interface

Introduction to Computer Science, Shimon Schocken slide 25

The comparable interface

B Value classes (like Point, Time) represent objects that typically have a natural order
B Therefore, it makes sense that these classes will of fer a comparison service
B TIn Java, object comparisons are standardized by the comparable interface:

Interface Comparable:

This interface imposes a total ordering on the abjef each class that implements it. This
ordering is referred to as the class's naturalrorgeand the class's compareTo method is
referred to as its natural comparison method.

Lists and arrays of objects that implement thisri@ice can be sorted automatically by
Collections.sort (and Arrays.sort). Objects thaplement this interface can be used as keys
in a sorted map or elements in a sorted set, witth@uneed to specify a comparator.

public intcompar eT o (Object 0)
Parameters. o - the Object to be compared.

Returns: a negative integer, zero, or a positive integeghasobject is less than, equal to,
or greater than the specified object.

Throws: ClassCastException - if the specified object's fypmvents it from being
compared to this Object.

(from the java.lang.Comprabale API)

Introduction to Computer Science, Shimon Schocken slide 26

Using comparable

// Represents a point on a grid.
public class Point implements Comparable {
private int x, y;

// We say that Point p is “greater than”
// point q if p.x + p.y > q.X + (.Y
public int compareTo (Object obj) {
Point other = (Point) obj;
if ((x + y) == (other.x + other.y))

By implementing comparable, a class
indicates that its instances have a
natural ordering

For a small price, you gain significant
benefits:

comparable objects can be sorted and
used in humerous Java collections

return 0O;
if ((x +y) < (other.x + other.y)) that depend on order.
return -1;
return 1; W
}
Point[] points = new Point[5];
} Random rnd = new Random();
——————————— for (int i = 0; i < points.length; i++)
points[i] = new Point(rnd.nextInt(10) , rnd.nextInt(10));
()quuT: for (Point p : points) System.out.print(p + " ");
(2,2) (4,4) (9,7) (&,2) (&,0)
(6,0) (4,4) (6,2) (8,2) (9,7) Arrays.sort(points);
System.out.printin();
for (Point p : points) System.out.print(p + " ");

Introduction to Computer Science, Shimon Schocken

slide 27

