
Introduction to Computer Science, Shimon Schocken slide 1

Inheritance

Lecture 10-2

Introduction to Computer Science, Shimon Schocken slide 2

Inheritance lectures outline

Lecture 10-1:

Interfaces

Motivation

Examples

Inheritance

Motivation

Examples

Sub-classing

Constructors

Methods

Lecture 10-2:

Narrowing / widening

Class Object

toString

Equals

HashCode

Run-time types

Virtual methods

Visibility

The final modifier

The Comparable interface

Introduction to Computer Science, Shimon Schocken slide 3

A typical inheritance hierarchy

// Represents a point on a grid.

public class Pointpublic class Pointpublic class Pointpublic class Point {

// The coordinates of this point

private int x, y;

// Constructs a point.

public Point(int x, int y) {

this.x = x;

this.y = y;

}

// Computes the distance from another point

public double distanceFrom (Point p) {

int dx = x - p.x;

int dy = y - p.y;

return Math.sqrt(dx * dx + dy * dy);

}

public String toString() {

return "(" + x + "," + y + ")";

}

...

}

// Represents a point on a grid.

public class Pointpublic class Pointpublic class Pointpublic class Point {

// The coordinates of this point

private int x, y;

// Constructs a point.

public Point(int x, int y) {

this.x = x;

this.y = y;

}

// Computes the distance from another point

public double distanceFrom (Point p) {

int dx = x - p.x;

int dy = y - p.y;

return Math.sqrt(dx * dx + dy * dy);

}

public String toString() {

return "(" + x + "," + y + ")";

}

...

}

base-class

// Represents a colored point on a grid.

public class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Point {

private Color color;

// Constructs a new colored point

public ColoredPoint(int x, int y,

Color color) {

super(x,y);

this.color = color;

}

}

enum Color {red, blue, green, yellow};

// Represents a colored point on a grid.

public class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Point {

private Color color;

// Constructs a new colored point

public ColoredPoint(int x, int y,

Color color) {

super(x,y);

this.color = color;

}

}

enum Color {red, blue, green, yellow};

subclass

Point p = new Point(50,100);

ColoredPoint cp = new ColoredPoint(10,20,Color.red);

System.out.println(cp); // prints (10,20)

Point p = new Point(50,100);

ColoredPoint cp = new ColoredPoint(10,20,Color.red);

System.out.println(cp); // prints (10,20)

client

Introduction to Computer Science, Shimon Schocken slide 4

The instanceof operator

// Recall that ColoredPoint extends PointColoredPoint extends PointColoredPoint extends PointColoredPoint extends Point

Point p = new Point(50,100);

ColoredPoint cp = new ColoredPoint(10,20,Color.red);

String s = new String("bla");

System.out.println (p instanceof Point); // true

System.out.println (cp instanceof ColoredPoint); // true

System.out.println (cp instanceof Point); // true

System.out.println (p instanceof ColoredPoint); // false

System.out.println (s instanceof Point); // compilation error

// Recall that ColoredPoint extends PointColoredPoint extends PointColoredPoint extends PointColoredPoint extends Point

Point p = new Point(50,100);

ColoredPoint cp = new ColoredPoint(10,20,Color.red);

String s = new String("bla");

System.out.println (p instanceof Point); // true

System.out.println (cp instanceof ColoredPoint); // true

System.out.println (cp instanceof Point); // true

System.out.println (p instanceof ColoredPoint); // false

System.out.println (s instanceof Point); // compilation error

Problem: How to tell if some object variable, say obj, points to an object of type SomeClass?

Solution: Check if obj instanceof SomeClass

If an object is an instance of some class, it is also an instance of it’s base-class.

When using obj instanceof SomeClass,
obj must be “related” to SomeClass.

ColoredPoint

Point

Introduction to Computer Science, Shimon Schocken slide 5

Narrowing / widening

Sometimes we want to “widen-up” an object and treat it like an instance of its base class

In other times we want to “narrow down” an object and treat it like an instance of one of
its subclasses

Point p = new Point(10,20);

Point cp = new ColoredPoint(2,3,Color.red);

p = (Point) cp; // cp is widened up (explicitly)

p = cp; // cp is widened up (implicitly)

cp = (ColoredPoint) p ; // p is narrowed down

cp = new Point(10,20);

Point p = new Point(10,20);

Point cp = new ColoredPoint(2,3,Color.red);

p = (Point) cp; // cp is widened up (explicitly)

p = cp; // cp is widened up (implicitly)

cp = (ColoredPoint) p ; // p is narrowed down

cp = new Point(10,20);

In Java:

� Widening up can be done either explicitly or implicitly

� Narrowing down requires explicit casting.

ColoredPoint

Point

Introduction to Computer Science, Shimon Schocken slide 6

Implicit widening by parameter passing

// A point on a grid

public class Pointpublic class Pointpublic class Pointpublic class Point {

private int x, y;

...

// Computes the distance from another point

public double distanceFrom (Point p)public double distanceFrom (Point p)public double distanceFrom (Point p)public double distanceFrom (Point p) {

int dx = x - p.x;

int dy = y - p.y;

return Math.sqrt(dx * dx + dy * dy);

}

...

}

// A point on a grid

public class Pointpublic class Pointpublic class Pointpublic class Point {

private int x, y;

...

// Computes the distance from another point

public double distanceFrom (Point p)public double distanceFrom (Point p)public double distanceFrom (Point p)public double distanceFrom (Point p) {

int dx = x - p.x;

int dy = y - p.y;

return Math.sqrt(dx * dx + dy * dy);

}

...

}

base-class

Point p = new Point(2,3);

ColoredPoint cp = new ColoredPoint(5,6,Color.red);

double d = p.distanceFrom(cp);

Point p = new Point(2,3);

ColoredPoint cp = new ColoredPoint(5,6,Color.red);

double d = p.distanceFrom(cp);

// Represents a colored point on a grid.

public class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Point {

private Color color;

...

}

enum Color {red, blue, green, yellow};

// Represents a colored point on a grid.

public class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Point {

private Color color;

...

}

enum Color {red, blue, green, yellow};

subclass

The method expects to get a Point parameter; Instead, it gets a ColoredPoint argument (cp).

That’s OK – cp is widened up by the type of the formal parameter.

Client

The inheritance principle: a subclass object can be used wherever an object
from its base-class is expected.

Introduction to Computer Science, Shimon Schocken slide 7

Method calling up the inheritance hierarchy

When a method is called on some object:

� If the compiler finds a matching method declaration
in the object’s class, it uses it

� Otherwise it searches the method in the immediate
parent class

� All the way up to java.lang.Object

� (An example is shown in slide 3, when we invoked
toString on a ColoredPoint object that has no toString
implementation)

ColoredPoint

Point

Object

is-a

is-a

Introduction to Computer Science, Shimon Schocken slide 8

Outline

Lecture 10-1:

Interfaces

Motivation

Examples

Inheritance

Motivation

Examples

Sub-classing

Constructors

Methods

Lecture 10-2:

Narrowing / widening

Class Object

toString

Equals

HashCode

Run-time types

Virtual methods

Visibility

The final modifier

The Comparable interface

Introduction to Computer Science, Shimon Schocken slide 9

Class Object: the parent class of all Java classes

� Class object is the root of the
class hierarchy

� Every Java class implicitly
extends Object

� Thus, the Object methods are
inherited by all Java classes

� Class designers are expected
to override some of these
base methods.

(partial API) : Discussed in this lecture

Introduction to Computer Science, Shimon Schocken slide 10

The toString method

When you override a method, you are expected to follow some rules

If the base-class is documented properly, these rules should be stated in its API
(as seen above).

(java.lang.Object API)

Introduction to Computer Science, Shimon Schocken slide 11

// Represents a point on a grid.

public class Point public class Point public class Point public class Point {

// The coordinates of the point

private int x, y;

// Constructs a point

public Point (int x, int y) {

this.x = x;

this.y = y;

}

public String toString ()public String toString ()public String toString ()public String toString () {

return "(" + x + "," + y + ") ";

}

. . .

}

// Represents a point on a grid.

public class Point public class Point public class Point public class Point {

// The coordinates of the point

private int x, y;

// Constructs a point

public Point (int x, int y) {

this.x = x;

this.y = y;

}

public String toString ()public String toString ()public String toString ()public String toString () {

return "(" + x + "," + y + ") ";

}

. . .

}

base-class

// Represents a colored point on a grid.

public class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Point {

private Color color;

// Constructs a new colored point

public ColoredPoint (int x, int y, Color color) {

super(x,y);

this.color = color;

}

public String toString ()public String toString ()public String toString ()public String toString () {

return super.toString() + " "

+ color.toString();

}

. . .

}

enum Colorenum Colorenum Colorenum Color {red, blue, green, yellow};

// Represents a colored point on a grid.

public class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Point {

private Color color;

// Constructs a new colored point

public ColoredPoint (int x, int y, Color color) {

super(x,y);

this.color = color;

}

public String toString ()public String toString ()public String toString ()public String toString () {

return super.toString() + " "

+ color.toString();

}

. . .

}

enum Colorenum Colorenum Colorenum Color {red, blue, green, yellow};

subclass

Overriding toString

overriding

Overridden methods can be invoked
using the syntax super.methodName

� Note the difference between method
overriding and overloading

Introduction to Computer Science, Shimon Schocken slide 12

The equals method

� Class designers normally override equals(), to reflect an equality relationship that
makes sense given this class semantics

� Important: if you override equals() you must also override hashCode()

� (more about hashCode later).

Introduction to Computer Science, Shimon Schocken slide 13

The equals method

public class Pointpublic class Pointpublic class Pointpublic class Point {

// The coordinates of the point

private int x, y;

...

public boolean public boolean public boolean public boolean equals (equals (equals (equals (Point other)Point other)Point other)Point other) {

if (other == this) return true;

if (other == null) return false;

return (x == other.x && y == other.y);

}

...

}

public class Pointpublic class Pointpublic class Pointpublic class Point {

// The coordinates of the point

private int x, y;

...

public boolean public boolean public boolean public boolean equals (equals (equals (equals (Point other)Point other)Point other)Point other) {

if (other == this) return true;

if (other == null) return false;

return (x == other.x && y == other.y);

}

...

}

Point p1 = new Point(10,20);

Point p2 = new Point(10,20);

System.out.println(p1 == p2); // false

System.out.println(p1.equals(p2)); // ?

// If equals was not overridden by Point, we’ll get falsefalsefalsefalse.

// If it was overridden by Point properly, we’ll get truetruetruetrue.

Point p1 = new Point(10,20);

Point p2 = new Point(10,20);

System.out.println(p1 == p2); // false

System.out.println(p1.equals(p2)); // ?

// If equals was not overridden by Point, we’ll get falsefalsefalsefalse.

// If it was overridden by Point properly, we’ll get truetruetruetrue.

client

Introduction to Computer Science, Shimon Schocken slide 14

public class Pointpublic class Pointpublic class Pointpublic class Point {

// The coordinates of the point

private int x, y;

...

public boolean equals (Object obj)public boolean equals (Object obj)public boolean equals (Object obj)public boolean equals (Object obj) {

if (obj == this) return true;

if (obj == null) return false;

if (!(obj instanceof Point)) return false;

Point other = (Point) obj;

return (x == other.x && y == other.y);

}

...

}

public class Pointpublic class Pointpublic class Pointpublic class Point {

// The coordinates of the point

private int x, y;

...

public boolean equals (Object obj)public boolean equals (Object obj)public boolean equals (Object obj)public boolean equals (Object obj) {

if (obj == this) return true;

if (obj == null) return false;

if (!(obj instanceof Point)) return false;

Point other = (Point) obj;

return (x == other.x && y == other.y);

}

...

}

Overriding the equals method

public class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Point {

private Color color;

...

public boolean equals (ColoredPoint otherpublic boolean equals (ColoredPoint otherpublic boolean equals (ColoredPoint otherpublic boolean equals (ColoredPoint other) {

if (this == other) return true;

if (super.equals(other) && (color == other.color)) return true;

return false;

}

...

}

public class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Point {

private Color color;

...

public boolean equals (ColoredPoint otherpublic boolean equals (ColoredPoint otherpublic boolean equals (ColoredPoint otherpublic boolean equals (ColoredPoint other) {

if (this == other) return true;

if (super.equals(other) && (color == other.color)) return true;

return false;

}

...

}

subclass

base class

A more general version of

equals, designed to

accommodate equals calls from

subclasses

base class

subclass

base class

Introduction to Computer Science, Shimon Schocken slide 15

Overriding the equals method, final version

public class Pointpublic class Pointpublic class Pointpublic class Point {

// The coordinates of the point

private int x, y;

...

public boolean public boolean public boolean public boolean equals (equals (equals (equals (Object obj)Object obj)Object obj)Object obj) {

if (this == obj) return true;

if (obj == null) return false;

if (!(obj instanceof Point)) return false;

Point other = (Point) obj;

return (x == other.x && y == other.y);

}

...

}

public class Pointpublic class Pointpublic class Pointpublic class Point {

// The coordinates of the point

private int x, y;

...

public boolean public boolean public boolean public boolean equals (equals (equals (equals (Object obj)Object obj)Object obj)Object obj) {

if (this == obj) return true;

if (obj == null) return false;

if (!(obj instanceof Point)) return false;

Point other = (Point) obj;

return (x == other.x && y == other.y);

}

...

}

public class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Point {

private Color color;

...

public boolean public boolean public boolean public boolean equals (equals (equals (equals (Object obj)Object obj)Object obj)Object obj) {

if (this == obj) return true;

if (!super.equals(obj)) return false;

if (!(obj instanceof ColoredPoint)) return false;

ColoredPoint other = (ColoredPoint) obj;

if (color != other.color) return false;

return true;

}

}

public class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Pointpublic class ColoredPoint extends Point {

private Color color;

...

public boolean public boolean public boolean public boolean equals (equals (equals (equals (Object obj)Object obj)Object obj)Object obj) {

if (this == obj) return true;

if (!super.equals(obj)) return false;

if (!(obj instanceof ColoredPoint)) return false;

ColoredPoint other = (ColoredPoint) obj;

if (color != other.color) return false;

return true;

}

}

subclass

base class

Likewise, designed to
accommodate equals calls
from subclasses of
ColoredPoint, if and when
such subclasses will be
defined.

These equals methods were generated
automatically by Eclipse.

Introduction to Computer Science, Shimon Schocken slide 16

Overriding hashCode

public class Pointpublic class Pointpublic class Pointpublic class Point {

// The coordinates of the point

private int x, y;

...

public int public int public int public int hashCode ()hashCode ()hashCode ()hashCode () {

final int prime = 31;

int result = 1;

result = prime * result + x;

result = prime * result + y;

return result;

}

...

}

public class Pointpublic class Pointpublic class Pointpublic class Point {

// The coordinates of the point

private int x, y;

...

public int public int public int public int hashCode ()hashCode ()hashCode ()hashCode () {

final int prime = 31;

int result = 1;

result = prime * result + x;

result = prime * result + y;

return result;

}

...

}

Every Java object has a numeric unique identifier,
called “hash code”

The Object class has a hashCode method that
returns this number (that’s the number that
the standard toString method returns)

Overriding implementations of hashCode are
expected to create an implementation that
ensures that obj1.hashCode() = obj2.hashCode()
if and only if obj1.equals(obj2)

This can be done by implementing a certain
function on the object’s field values

The particular hashCode method shown on the left
was generated automatically by Eclipse.

Introduction to Computer Science, Shimon Schocken slide 17

Overriding rules

� A subclass can override methods from its base-class

� The base-class API should state what is expected of overriding implementations of
its methods

� The method signatures (name, number and type of the parameters) of the
overriding method and the overridden method must be identical

� The visibility modifier of the overriding method can allow more access than the
overridden method, but not less. For example, a protected method in the base-class
can be made public but not private.

� The overriding method can have a different throws clause as long as it doesn't
declare any types not declared by the throws clause in the overridden method.

Introduction to Computer Science, Shimon Schocken slide 18

Outline

Lecture 10-1:

Interfaces

Motivation

Examples

Inheritance

Motivation

Examples

Sub-classing

Constructors

Methods

Lecture 10-2:

Narrowing / widening

Class Object

toString

Equals

HashCode

Run-time types

Virtual methods

Visibility

The final modifier

The Comparable interface

Introduction to Computer Science, Shimon Schocken slide 19

Run-time type

Consider the following code:

Point p;

ColoredPoint cp = new ColoredPoint(10, 20, Color.green);

p = cp;

Point p;

ColoredPoint cp = new ColoredPoint(10, 20, Color.green);

p = cp;

Terminology: We say that …

The compile-time type of p is Point

The run-time type of p is ColoredPoint

Run-time type

� The run-time type is always some subclass of the compile-time type

� The same object can have different run-time types in different program runs.

ColoredPoint

Point

Object

Introduction to Computer Science, Shimon Schocken slide 20

Virtual method calling

public class Animalpublic class Animalpublic class Animalpublic class Animal {

public String eats() { return "food"; }

}

public class Animalpublic class Animalpublic class Animalpublic class Animal {

public String eats() { return "food"; }

}

// Narrowing demo

Animal a;

Cow c = new Cow();

a = c;

System.out.println(a.eats());

// prints “grass”

// Narrowing demo

Animal a;

Cow c = new Cow();

a = c;

System.out.println(a.eats());

// prints “grass”

public class Cow extends Animalpublic class Cow extends Animalpublic class Cow extends Animalpublic class Cow extends Animal {

public String eats() { return "grass"; }

}

public class Cow extends Animalpublic class Cow extends Animalpublic class Cow extends Animalpublic class Cow extends Animal {

public String eats() { return "grass"; }

}

� In an object-oriented language,
(non-static) methods are always
invoked on some object

� If the object has been narrowed
or widened, which method
implementation should be used?

Virtual method calling:
The method to be invoked is
determined by the run-time type
of the object (not by its compile-
time type)

In Java, all methods invocations are
virtual (unlike C++).

base-class

subclass

Client

Introduction to Computer Science, Shimon Schocken slide 21

Outline

Lecture 10-1:

Interfaces

Motivation

Examples

Inheritance

Motivation

Examples

Sub-classing

Constructors

Methods

Lecture 10-2:

Narrowing / widening

Class Object

toString

Equals

HashCode

Run-time types

Virtual methods

Visibility

The final modifier

The Comparable interface

Introduction to Computer Science, Shimon Schocken slide 22

Visibility modifiers

private : Accessible to this class only

public : Accessible to any class

protected : (1) Accessible to any class in the same package as this class
(2) Accessible to any subclass of this class

None (default): Package-private: accessible to any class in the same package as this class

The visibility modifier of a member determines which other classes can access the member.

There are four possibilities:

Usage

� Use protected to expose a member to
subclasses and hide it from the rest
of the world

� Avoid defining too many protected variables:
it hurts encapsulation

� A protected member is considered part of the class interface and should be documented
in the class API.

Introduction to Computer Science, Shimon Schocken slide 23

The final modifier

The final modifier can be applied to classes, methods and variables;
in each case it has a different meaning:

� final className indicates that the class cannot have subclasses

� final methodName indicates that the method cannot be overridden

� final variableName indicates that the variable can be initialized only once

Declaring a class final can improve performance, since Java does not have to maintain
the run-time types of its objects.

Case in point: the String class is declared final.

Introduction to Computer Science, Shimon Schocken slide 24

Example of a final method

Class Object features a getClass method that returns the run-time type of any given
object. For example:

Point cp = new ColoredPoint(2,3,Color.red);

System.out.println(cp.getClass()); // prints "class ColoredPoint“

cp = new Point(10,20);

System.out.println(cp.getClass()); // prints "class Point"

Point cp = new ColoredPoint(2,3,Color.red);

System.out.println(cp.getClass()); // prints "class ColoredPoint“

cp = new Point(10,20);

System.out.println(cp.getClass()); // prints "class Point"

Many classes and programmers expect getClass to work that way.

Therefore, letting other classes override it makes no sense.

To prevent overriding, this method is declared (in Class Object) as final.

Introduction to Computer Science, Shimon Schocken slide 25

Outline

Lecture 10-1:

Interfaces

Motivation

Examples

Inheritance

Motivation

Examples

Sub-classing

Constructors

Methods

Lecture 10-2:

Narrowing / widening

Class Object

toString

Equals

HashCode

Run-time types

Virtual methods

Visibility

The final modifier

The Comparable interface

Introduction to Computer Science, Shimon Schocken slide 26

The Comparable interface

� Value classes (like Point, Time) represent objects that typically have a natural order

� Therefore, it makes sense that these classes will offer a comparison service

� In Java, object comparisons are standardized by the Comparable interface:

This interface imposes a total ordering on the objects of each class that implements it. This
ordering is referred to as the class's natural ordering, and the class's compareTo method is
referred to as its natural comparison method.

Lists and arrays of objects that implement this interface can be sorted automatically by
Collections.sort (and Arrays.sort). Objects that implement this interface can be used as keys
in a sorted map or elements in a sorted set, without the need to specify a comparator.

public int compareTo (Object o)

Parameters: o - the Object to be compared.

Returns: a negative integer, zero, or a positive integer as this object is less than, equal to,
or greater than the specified object.

Throws: ClassCastException - if the specified object's type prevents it from being
compared to this Object.

Interface Comparable:

(from the java.lang.Comprabale API)

Introduction to Computer Science, Shimon Schocken slide 27

Using Comparable

// Represents a point on a grid.

public class Point implements Comparablepublic class Point implements Comparablepublic class Point implements Comparablepublic class Point implements Comparable {

private int x, y;

...

// We say that Point p is “greater than”

// point q if p.x + p.y > q.x + q.y

public int compareTo (Object obj)public int compareTo (Object obj)public int compareTo (Object obj)public int compareTo (Object obj) {

Point other = (Point) obj;

if ((x + y) == (other.x + other.y))

return 0;

if ((x + y) < (other.x + other.y))

return -1;

return 1;

}

...

}

// Represents a point on a grid.

public class Point implements Comparablepublic class Point implements Comparablepublic class Point implements Comparablepublic class Point implements Comparable {

private int x, y;

...

// We say that Point p is “greater than”

// point q if p.x + p.y > q.x + q.y

public int compareTo (Object obj)public int compareTo (Object obj)public int compareTo (Object obj)public int compareTo (Object obj) {

Point other = (Point) obj;

if ((x + y) == (other.x + other.y))

return 0;

if ((x + y) < (other.x + other.y))

return -1;

return 1;

}

...

}
Point[] points = new Point[5];

Random rnd = new Random();

for (int i = 0; i < points.length; i++)

points[i] = new Point(rnd.nextInt(10) , rnd.nextInt(10));

for (Point p : points) System.out.print(p + " ");

Arrays.sort(points);

System.out.println();

for (Point p : points) System.out.print(p + " ");

Point[] points = new Point[5];

Random rnd = new Random();

for (int i = 0; i < points.length; i++)

points[i] = new Point(rnd.nextInt(10) , rnd.nextInt(10));

for (Point p : points) System.out.print(p + " ");

Arrays.sort(points);

System.out.println();

for (Point p : points) System.out.print(p + " ");

client

Output:

By implementing Comparable, a class
indicates that its instances have a
natural ordering

For a small price, you gain significant
benefits:

Comparable objects can be sorted and
used in numerous Java collections
that depend on order.

