Lecture 10-1

Inheritance

Introduction to Computer Science, Shimon Schocken slide 1

Interfaces: an example where they come to play

"Interface” is an OO artifact that serves many purposes. Here is one of them:

A large scale software development project consists of many classes, designed and
implemented by many developers

To promote consistency, coherence, correctness, and best practice, the project
architect can diactate certain design rules

For example, she can insist that certain classes will have certain methods, and that the
methods will have certain signatures - even if she is not the designer or implementor
of these classes

Case in point: iterators. An iterator is an object that provides iteration services over
the items of a collection. Which methods should the iterator have? And how should
we name them?

QO hasNext() , hasMore() , MoreworkToDo(), ... ?
0 next(), getNext(), ...?
QO advance(), advanceNext(), moveNext(), ... ?
The architect can enforce a design convention that iterators will have to follow

This is done using a programming artifact called interface.

Introduction to Computer Science, Shimon Schocken slide 2

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Example: Java’s Iterator interface

Java specirfies an interface describing a standard mechanism to move through a
collection of objects, one object at a time:

java.util

Interface Iterator<E>>

Method Summary

boolean |hasNext ()
Returns true if the iteration has more elements.

E|next()
Returns the next element in the iteration.

void | remove ()

Removes from the underlying collection the last element returned by the iterator (optional operation).

Java programmers can write two kinds of iterators:
e “Free style” itertaors: don't follow the above design

e Iterators that implement the java.util.1terator interface:
must follow the design stated in the interface.

Introduction to Computer Science, Shimon Schocken slide 3

List iterator

List iterator implementation (“free style”) A list iterator implementation that implements Iterator

public class ListIterator { import java.util.Iterator;

// current position in the list public class ListIterator implements Iterator {
Item current;
// current position in the list
public ListIterator (Item item) { Item current;
current = item;
public ListIterator (Item list) {
current = Tlist;

public boolean hasNext (O { }
return !(current == null);
public boolean hasNext () {
return !(current == null);
public Item getNext () { }
return current;
} public Item next O {
Item item = current;
public Item advance () { current = current.next;
current = current.next; return item;
} }
} public void remove() {
throw new UnsupportedOperationException();
}
}
Introduction to Computer Science, Shimon Schocken slide 4

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Another example where interface comes to play: musical instruments

// Represents a musical instrument Public class Guitar implements Instrument{
interface Instrument {
void play O;
void mute Q;

// Constructs a guitar
public Guitar (...) {}

} // various guitar methods

public void play O {

We wish to create several classes, each // Code that plays this guitar

representing a musical instrument }

We want to force all these cl_asses to public void mute O {
implement a set of behaviors that // code that mutes this guitar
every musical instrument must have) }

This design goal can be achieved using an

interface public class Flute implements Instrument {
// Similar, must implement play() and mute()

B An interface says: "Classes that }

implement me should at /east support
the methods I describe”

B Each class that implements an public class Flute implements Instrument {
interface says: T suppor“r all the // Ssimilar, must implement play() and mute()
methods described by the interface ¥
that I implement”.

Introduction to Computer Science, Shimon Schocken slide 5

The rules of the game

The interface: // Represents a musical instrument

® Interface = a collection of abstract methods UIVERREs A s |

and constants void play O;
void mute Q;

B Aninterface file is a compliation unit, }
just like a class file

An interface cannot be instantiated (ho new)
class Guitar implements Instrument {

B All the methods of an interface are, by // Must implement play() and mute()
default, public and abstract ¥

The implementing class:

B A class can implement O, 1, or more interfaces

B The impelemting class must provide implementations for all the methods mentioned in all
the interfaces it implements; failure to do so causes a compilation error

B Multiple classes can implement the same interface

The Java standard class library includes many interfaces.

Introduction to Computer Science, Shimon Schocken slide 6

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Set iterator abstraction and usage

set APIL:

Set s = new Set();

public class set { for (int i = 0; i < 10; i++)
s.insert(i*2);

public set
// Prints the set’s contents:

public void insert (int x) for (Iterator i = s.iterator(); i.hasNext();) {

public boolean contains (int x) SYSLen CLE PRI R SO

public Iterator iterator() 0 PriEs 2 4 6 8 ooc

How does the client programmer know which methods the iterator object provides?

She sees from the set API that it is an Iterator, so she consult the Java 1terator
APT and know what to expect.

Introduction to Computer Science, Shimon Schocken slide 7

Set iterator implementation

import java.util.Iterator; class SetIterator implements Iterator {

import java.util.NoSuchElementException; . .
private int[] elements;

public class Set { prjvate 1:nt §1‘ze;
private int index;

private int[] elements;

private int size; SetIterator(int[] elements, int size) {
this.elements = elements;

// The regular Set methods come here this.size = size;
this.index = 0;

public Iterator iterator() { }

return new SetIterator(elements, size); A
3} public boolean hasNext() {
} return index < size;

class SetIterator implements Iterator {
public Object next() {

// see definition on the right if (thasNext()) {
throw new NoSuchElementException();

return elements[index++];

B Note how the iterator gives the client public void remove() {

encapsulated access to the private data throw new UnsupportedOperationException();
B Note that setIterator can be treated as 1
an rterator. That's an example of
inheritance.
Introduction to Computer Science, Shimon Schocken slide 8

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Outline

Interfaces
Motivation

Examples

i> Inheritance

Motivation

Examlpes

Sub-classing
Constructors
Methods

To be continued ...

Introduction to Computer Science, Shimon Schocken slide 9

Why inheritance?

B We are asked to write an application that manages and displays
analog clocks and digital clocks

B We notice that both abstractions have something Clock
in common: a clock behavior
Data: hours

B TInother words: minutes
seconds

e Ananalog (digital) clock /s a clock

e It has all the basic features of a clock + Behavior: setTime ()
some analog- (digital-) specific features getHours ()
setHours ()

Inheritance
If we already have a clock class, we could:

1. Define a new class, say analogciock, and make it
inherit the non-private data and functionality of
the clock class

2. Further, we could endow analogclock with
additional functionality of its own

We could design other clock variants similarly Analog Clock Digital Clock

Implications: less work, less bugs, more consistency.

Introduction to Computer Science, Shimon Schocken slide 10

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Example: Clocks

Clock Base-class
B The derived sub- e
class inherits the setTime ()
H getHours()
non-private ——-
members of the S
base-class

additional, sub- AnalogClock ® DigitalClock
ClaSSl;SPECIfIC setSecondsPointerAngle() setAlarmTime()
members setMinutesPointerAngle() getAlarmTime()
setHoursPointerAngle() snooze()
display() display O
00 terminology:

0 Base-class = super-class = parent class
0 Sub-class = derived class = child class

0 To extend = to derive = to sub-class.

B Usually, the sub- /“,-.S.an \
i - lationships -
class will have Sub-class relationship: Sub-class

Ly

Introduction to Computer Science, Shimon Schocken

slide 11

Client view Clock Base-class

setTime()
getHours()
setHours()

AnalogClock DigitalClock

setSecondsPointerAngle() setAlarmTime()
setMinutesPointerAngle() getAlarmTime()
setHoursPointerAngle() snooze()

display O display)

public class SomeClass {

DigitalClock dc = new DigitalClock();

vig-g"
Sub-class /re:;ﬁonsh;\ub—class

- 0@

dc.setAlarmTime(5,30,0); / i s

. Clients of the sub-class can invoke
dc. 10,0,0); &—no |
€ setTine(10,0,0) methods of both the sub-class and

}

Introduction to Computer Science, Shimon Schocken

slide 12

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Example: Switches

Base-class abstraction Switch
// A switch that can be on or off. Best pr‘qcﬂce advice:
public class switch { off @ on use inherotance only when
the sub-class is a sub-type
// The state of this switch of the base class.

private boolean 1ison;

Sub-class implementation

public switch (boolean ison) {

setIson(ison); public class Adjustableswitch extends switch {
}
private float level;
public boolean ison) {

R public Adjustableswitch (float level) {

} // later ...
}
public void setIson (boolean ison) {
this.ison = ison; public void setLevel (float level) {
3 this.Tevel = level;
setIson(level > 0);

3 Adjustable switch

PR
. .

public float getLevel O { K .
return (ison() ? level : 0); off @ on
}

The sub-class is typically more
specific than the base-class.

Introduction to Computer Science, Shimon Schocken slide 13

The inheritance hierarchy

Switch
- isOn : Boolean

+ Switch(boolean isOn)
+isOn () : Boolean
+ setlsOn () : void

AdjustableSwitch
- level : float

+ AdjustableSwitch(float level)
+ setLevel (float level) : void
+ getLevel () : float

The sub-class inherits all the non-private members of the base-class.

The non-private members of the base-class may be used just like sub-class members

Introduction to Computer Science, Shimon Schocken slide 14

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Outline

Interfaces
Motivation

Examples

Inheritance
Motivation

Examlpes

:> Sub-classing

Constructors
Methods

To be continued ...

Introduction to Computer Science, Shimon Schocken

slide 15

Sub-class constructors

Constructors are not inherited.
A sub-class constructor always has the same logic:

1. First, it must invoke a constructor of the base-
class. This is done in order to initialize the
state of the sub-class object from the base-
class perspective

2. Second, it may do some additional sub-class
construction work.

base-class

public class switch {
private boolean 1isOn;

public switch (boolean ison) {
setIson(ison);
}

// Other switch methods

A sub-class constructor must begin with L

Or: this.anothersubClassConstructor(...)

Example: public class Adjustableswitch extends Switch {
' private float level;

public Adjustableswitch (float level) {
super(level > 0);
this.level = level;

Either: super(...) // other Adjustableswitch methods

Nseo-closs g

Introduction to Computer Science, Shimon Schocken

slide 16

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Sub-class constructors (cont.)

If we don't declare any constructor in the sub-class, the compiler automatically:
1. Adds an empty (default) constructor to the sub-class

2. Putsinit asuperO call to the constructor of the base-class

A sub-class without any constructor: Becomes (implicitly):

b1i 1 Cl extends C2
public class Cl extends C2 { pubiic c ass extends {

// cl Fields 4 S AIEES
i blic c1
// €1 methods (no constructor) jac PRLSIE F) {
} super();
}
// €1 methods

® TIf we declare a sub-class constructor, but don't say explicitly super() as its first
instruction, the compiler will automatically insert super() as the first instruction

® If there is no argument-less constructor in the super-class, the sub-class code will not
compilel

Introduction to Computer Science, Shimon Schocken slide 17

Example: file management (the story)

Required: a system that lets users access a file only if it in a stable state.

m ToStringDemo. class | Error Renaming File or Folder

E] ToStringDema. java

- . Trylng to rename a file called Cannaot rename transactions: The File is in use
|ﬂ TowerOfHanoi. class “transactions”
igva . ou must close the file before proceeding.
- But, the file happens to be in
= K,
mTurtIeFractall.class use by another program. -

E] TurtleFractall . java

"Stable state” depend on the application. Examples:

o Operating system: As long as some program is doing something to a file,
no other program is allowed to access this file

o Transaction processing: As long as some user reserves a seat in a flight,
no other user is allowed to access the reservations file

Typical solution: define a Boolean attribute that stores the file state (open / not open).
Clients can access the file only if it's not open.

Introduction to Computer Science, Shimon Schocken slide 18

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

File management

.= <>

// F'E'Ie imp]eme.ntat-ion File f = new File("reservations");
public class File { . .
// Some file processing code
private String name; file.close();
private boolean 1isOpen; ’
public File (String name) {
this.name = name;

this.isOpen = true; f.openQ);
// Some file processing code
public void open QO { f.closeQ;

if (isopen)

// code for denying access
else

isOpen = true;

}
public void close O { Access control:
isopen = false;
} B When a client wants to access a file,

// Other File methods it calls f.open()

} B When file processing ends,
the client calls f.close)

B This allows safe file sharing.

Introduction to Computer Science, Shimon Schocken slide 19

File management (the story continues)

Required: In addition to access control, which is mandatory for all files, we want to
allow creation and access of password-protected files:

x

Enter password to open file
D:\demoltransactions.doc
I*********l

oK I Cancel

B A protected file should have all the features of a regular file,
plus password protection

B This extension can be handled by sub-classing the File class.

Introduction to Computer Science, Shimon Schocken slide 20

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

Outline

Interfaces
Motivation

Examples

Inheritance
Motivation

Examlpes

Sub-classing

Constructors

I:> Methods

To be continued ...

Introduction to Computer Science, Shimon Schocken

slide 21

File management

base-class

// Represents a file
public class File {

private String name;
private boolean isOpen;

public File(String name) {
this.name = name;
this.isOpen = true;

public void open () { :
if (isopen)
// code for denying access
else :
isopen = true; :

public void close () {
isopen = false;

// Other File methods

// Rep. a password-protected fﬂe®

public class RestrictedFile
extends File {

private int pwd;

public RestrictedFile (String name,
int pwd) {
super(name) ;
this.pwd = pwd;
}

public void changePwd (int oldpwd,
int newPwd)

if (this.pwd == oldpwd)
this.pwd = newpPwd;

i public void open (int pwd) { |

if (! (this.pwd == pwd)) 0
// code for incorrect pwd
1 else
; super.open(); :

N

>

.

Sub-class

functionality:
sub-class

specific
methods

Inherited
functionality:

method

overriding
} And
JTTTTT s) method
overloading
Introduction to Computer Science, Shimon Schocken slide 22

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

The inheritance hierarchy

File

- Name

- isOpen

+ file(String name)
+ open()

+ close()

RestrictedFile
- pwd

+ RestrictedFile (String name, int pwd)
+ changepwd (int oldPwd, int newPwd)

+ open (int pwd)

Introduction to Computer Science, Shimon Schocken slide 23

Intorduction to Computer Science m IDC Herzliya m Shimon Schocken

