
Intorduction to Computer Science � Shimon Schocken � IDC Herzliya � 2010

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 1

Introduction to Computer Science
Shimon Schocken

IDC Herzliya

Lecture 1-2:

Lecture 1-2:

A Taste of Java and
Object-Oriented Programming

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 2

Lecture outline

� Java background

� Java program example

� Basic syntax rules

� Program development life cycle

� A taste of object oriented programming

� Homework exercise 1

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya � 2010

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 3

Java background

� Brief history:

� 1995: invented by James Gosling at Sun Microsystems (1995)

� Original design objective:
a programming language for the Internet: safety and portability

� Actual accomplishment: a great language in almost every respect

� Borrows from many other languages:
C / C++, Pascal, Scheme, SmallTalk

� 1996: IDC adopts Java as CS101 programming language

� 1999: Microsoft releases C#

Why did we adopt Java?

Because Java ...

� Is object oriented (OO)

� Encourages good programming habits

� Similar to C++, but simpler and more elegant

� Commercial

� Cool.

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 4

Java program example

Task: Print the numbers 0 to 5

i = 0;

while (i < 6)

print i

i = i + 1

i = 0;

while (i < 6)

print i

i = i + 1

Algorithm:

// prints the numbers 0 to 5

public class PrintSomeNumbers {

public static void main(String[] args){

// declare an integer variable and set it to 0

int i = 0;

while (i < 6) {

// print the current value of i

System.out.println(i);

i = i + 1;

}

System.out.println(“Done”);

}

}

// prints the numbers 0 to 5

public class PrintSomeNumbers {

public static void main(String[] args){

// declare an integer variable and set it to 0

int i = 0;

while (i < 6) {

// print the current value of i

System.out.println(i);

i = i + 1;

}

System.out.println(“Done”);

}

}

Java implementation:

// prints the numbers 0 to 5

public class PrintSomeNumbers {{{{

public static void main(String[] args){{{{

// declare an integer variable and set it to 0

int i = 0;

while (i < 6) {{{{

// print the current value of i

System.out.println(i);

i = i + 1;

}}}}

System.out.println(“Done”);

}}}}

}}}}

// prints the numbers 0 to 5

public class PrintSomeNumbers {{{{

public static void main(String[] args){{{{

// declare an integer variable and set it to 0

int i = 0;

while (i < 6) {{{{

// print the current value of i

System.out.println(i);

i = i + 1;

}}}}

System.out.println(“Done”);

}}}}

}}}}

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya � 2010

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 5

// prints the numbers 0 to 5

public class PrintSomeNumbers {

public static void main(String[] args){

// declare an integer variable and set it to 0

int i = 0;

while (i < 6) {

// print the current value of i

System.out.println(i);

i = i + 1;

}

System.out.println(“Done”);

}

}

// prints the numbers 0 to 5

public class PrintSomeNumbers {

public static void main(String[] args){

// declare an integer variable and set it to 0

int i = 0;

while (i < 6) {

// print the current value of i

System.out.println(i);

i = i + 1;

}

System.out.println(“Done”);

}

}

Java syntax elements (first approximation)

comment

String

literalnumeric

literal

keyword identifier

symbol

“Words”:

� Reserved words

� Identifiers

Literals:

� Numbers

� Strings

� (More later)

Symbols:

� () [] { } ,
. ; + - * / …

Comments

� Text beginning
with //

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 6

Java reserved words

abstract continue for new switch

assert default goto(*) package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strict volatile

const(*) float native super while

(*): Not used.

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya � 2010

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 7

Java program structure

public class yyy {
public class yyy {

public class xxx {

public class PrintSomeNumbers {

public static vo

public class xxx {

public class PrintSomeNumbers {

public static vo

public class PrintSomeNumbers {

public static void main(String[] args){

int i = 0;

while (i < 6) {

// print the current value of i

System.out.println(i);

i = i + 1;

}

System.out.println(“Done”);

}

// More methods follow ...

}

public class PrintSomeNumbers {

public static void main(String[] args){

int i = 0;

while (i < 6) {

// print the current value of i

System.out.println(i);

i = i + 1;

}

System.out.println(“Done”);

}

// More methods follow ...

}

methodclassprogram statements

� Program (loosely defined): consists of one or more classes

� Class: consists of one or more methods, one of which must be named Main()

� Method: a sequence of statements

� Statement: ends with a semicolon (;) or enclosed in curly braces ({ })

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 8

// prints the numbers 0 to 5

public class PrintSomeNumbers {

public static void main(String[] args){

// declare an integer variable and set it to 0

int i = 0;

while (i < 6) {

// print the current value of i

System.out.println(i);

i = i + 1;

}

System.out.println(“Done”);

}

}

// prints the numbers 0 to 5

public class PrintSomeNumbers {

public static void main(String[] args){

// declare an integer variable and set it to 0

int i = 0;

while (i < 6) {

// print the current value of i

System.out.println(i);

i = i + 1;

}

System.out.println(“Done”);

}

}

White space

White space = comments and indentation (ignored by the compiler).

White space, left to the programmer’s discretion, is used for readability

Purpose: To make programs readable

Important: Program readability and clarity are as important as program correctness (maybe more)!

public class PrintSomeNumbers {public static void main(String[] args){int i=0;while
(i<5){System.out.println(i);i=i+1;}System.out.println(“Done”);}}

public class PrintSomeNumbers {public static void main(String[] args){int i=0;while
(i<5){System.out.println(i);i=i+1;}System.out.println(“Done”);}}

Same
functionality

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya � 2010

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 9

Syntax / semantics / style

Syntax: the rules of the language: vocabulary and grammar

Semantics: what a sentence in the language means

Style: how well do you say it?

Natural languages:

Sometimes it is allowed to break the syntax rules

Occasionally there is more than one meaning to a sentence.

Programming languages:

You are never allowed to break the syntax rules

There is only one semantic interpretation: no ambiguity.

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 10

Lecture outline

� Java background

� Java program example

� Basic syntax rules

� Program development life cycle

� A taste of object oriented programming

� Homework exercise 1

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya � 2010

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 11

Java program development life cycle

javac Java
compiler

Xxx.class Bytecode

file

java Java
interpreter

Xxx.java
Java
source
file

Edit

Happy
with

results?

Debugging
process

No

Yes

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 12

The tools of the trade: basics

Plain text editor

Compilation and execution:

Debugging

0. Run the program

1. Observe the program’s execution

2. Figure out what’s wrong

3. Fix the code in the editor

4. Goto step 0 …

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya � 2010

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 13

IDE: a software package that features a combination of:

� Editor (programming-oriented)

� Compiler

� Debugger

� Project Manager

� Many more cool goodies

Some Commercial IDEs:

� Eclipse (open source)

� Visual Age

� InteliJ

� Jcreator

� NetBeans

� . . .

The tools of the trade: Integrated Development Environments

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 14

Debugging

That’s what you’ll do most of the semester

Murphy’s Law:
Anything that can
possibly go wrong,
will.

Errors are the
portals of
discovery
(James Joyce)

Error types:

� Compile-time errors: mostly syntax violations;
detected by the compiler

� Run-time errors: the program passes compilation,
runs, but crashes

� Logical errors:

� The program runs, doing something you didn’t want it to do

� The program runs, but should be improved for some reason.

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya � 2010

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 15

Lecture outline

� Java background

� Java program example

� Basic syntax rules

� Program development life cycle

� A taste of object oriented programming

� Homework exercise 1

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 16

Introducing the turtle

A formal, structured description of

the Turtle’s properties and

operations. Aimed at programmers

who wish to construct and

manipulate turtles (Turtle objects).

A formal, structured description of

the Turtle’s properties and

operations. Aimed at programmers

who wish to construct and

manipulate turtles (Turtle objects).

Turtle abstraction (formal)

A public Java class, named Turtle,

that implements the Turtle

abstraction.

A public Java class, named Turtle,

that implements the Turtle

abstraction.

Turtle implementation

Turtle description (informal)

A turtle is a turtle-like graphical image that moves on the

screen under program’s control.

When the turtle’s tail is down, the movements are traced

(drawn on the screen). When the tail is up, the

movements are not traced.

The turtle is always facing a certain direction, and its tail is

always either up or down.

We wish to be able to construct turtles (Turtle objects)

and move them on the screen under program control

A turtle is a turtle-like graphical image that moves on the

screen under program’s control.

When the turtle’s tail is down, the movements are traced

(drawn on the screen). When the tail is up, the

movements are not traced.

The turtle is always facing a certain direction, and its tail is

always either up or down.

We wish to be able to construct turtles (Turtle objects)

and move them on the screen under program control

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya � 2010

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 17

Turtle abstraction = Turtle class interface = Turtle API

� The Turtle implementation is a black box:
we have no access to its code

� The Turtle abstraction (API) is a publicly
available document

� The API specifies which operations can be
invoked on Turtle objects, and how to
invoke them

� Some of these operations are designed to
create new Turtle objects, while others
are designed to manipulate existing Turtle
objects

Turtle class API (partial)

OOP Terminology: The words

� Abstraction

� Class interface

� API

Mean the same thing: a structured, agreed-
upon, user-oriented way to document class
functionality.

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 18

Using the Turtle API

Turtle class API (partial)
public class TurtleDrawingDemo {

public static void main(String[] args){

Turtle leonardo = new Turtle();

leonardo.tailDown();

leonardo.moveForward(100);

leonardo.turnRight(60);

leonardo.moveForward(100);

}

}

public class TurtleDrawingDemo {

public static void main(String[] args){

Turtle leonardo = new Turtle();

leonardo.tailDown();

leonardo.moveForward(100);

leonardo.turnRight(60);

leonardo.moveForward(100);

}

}

Turtle usage example

Intorduction to Computer Science � Shimon Schocken � IDC Herzliya � 2010

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 19

Object oriented programming

Some of these classes are implemented by you; some classes come from the Java

class library; some are implemented by other programmers who you may or may

not know

For example, if someone wrote a class named BouncingBall and made it publicly

available, programmers who develop applications that need bouncing ball

functionality can now use the BouncingBall API

Some OOP advantages

� Code reuse: no need to re-invent the wheel

� Code consistency

� Divide and conquer

� Modularity.

In OOP, much of the programming activity evolves around creating and manipulating objects of

certain types. For example, leonardo is an object of type Turtle

The rules for creating and manipulating objects are specified in class interfaces

A Taste of Java and OO programming, Shimon Schocken, IDC Herzliya, www.intro2cs.com slide 20

Homework Exercise 1

� Play with a simple Java program

� Experience debugging

� Do some turtle graphics

� Further instructions: see the course web site.

